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Abstract 

 
The random-walk (white-noise) model and the harmonic model are two polar models in linear 

systems. A model in between is color chaos which generates irregular oscillations with a narrow 
frequency (color) band. Time-frequency analysis is introduced for evolutionary time series analysis.  
The deterministic component from noisy data can be recovered by a time-variant filter in Gabor 
space.  The characteristic frequency is calculated from the Wigner decomposed distribution series. It 
is found that about seventy percent of fluctuations in Standard & Poor stock price indexes, such as 
the FSPCOM and FSDXP monthly series, detrended by the Hodrick-Prescott (HP) filter, can be 
explained by deterministic color chaos.  The characteristic period of persistent cycles is around 
three to four years. Their correlation dimension is about 2.5.  

The existence of persistent chaotic cycles reveals new perspective of market resilience and new 
sources of economic uncertainties. The nonlinear pattern in the stock market may not be wiped out 
by market competition under nonequilibrium situations with trend evolution and frequency shifts.  
The color-chaos model of stock-market movements may establish a link between business-cycle 
theory and asset-pricing theory. 

 
 

I. Introduction 



 2 

 
Finance theory in equilibrium economics is based on the random-walk model of stock prices. 

However, there is a more general scenario: a mixed process with random noise and deterministic 
pattern, including a possibility of deterministic chaos.  

Chaos is widely found in the fields of physics, chemistry, and biology. But the existence of 
economic chaos is still an open issue [Barnett and Chen 1988, Brock and Sayers 1989, Ramsey, 
Sayers, and Rothman 1990, DeCoster and Mitchell 1991, 1994, Barnett et. al. 1995]. Trends, noise, 
and time evolution caused by structural changes are the main difficulties in economic time series 
analysis. A more generalized spectral analysis is needed for testing economic chaos [Chen 1988, 
1993]. 

Measurement cannot be separated from theory. There are two polar models in linear dynamics: 
white noise and harmonic cycle. Correlation analysis and spectral analysis are complementary 
tools in the stationary time-series analysis. White noise has a zero correlation and a flat spectrum 
while a harmonic cycle has an infinite correlation and a sharp spectrum with zero-width. 
Obviously, real data fall between these two extremes.  

A major challenge in economic time series analysis is how to deal with time evolution. 
Econometric models, such as the ARCH and GARCH models  with a changing mean and variance 
are parametric models in the nonstationary stochastic approach [Engle 1982, Bollerslev 1986]. A 
generalized spectral approach is more useful in studies of deterministic chaos [Chen 1993]. 

It is known that a stationary stochastic process does not have a stationary or continuous 
instantaneous frequency in time-frequency representation. Therefore, we do not use the terms 
stationary and nonstationary which are familiar in a stochastic approach. A new representation 
will introduce some conceptual changes. There are many fundamental differences between a 
nonlinear deterministic approach and  a linear stochastic approach including time scales, 
observation references, and testing philosophy. 

From the view of theoretical studies,  the discrete-time white chaos generated by nonlinear 
difference equations is tractable in analytic mathematics and compatible with the optimization 
rationality [Day and Benhabib 1980, Benhabib 1990]. From the needs of empirical analysis, the 
continuous-time color chaos generated by nonlinear differential equations is more capable of 
describing business cycles than white chaos, because their erratic fluctuations and recurrent 
pattern can be characterized by nonlinear oscillations with irregular amplitude and a narrow 
frequency (color) band in spectrum [Chen 1988, 1993; Zarnowitz 1993]. 

We introduce the time-frequency representation as a non-parametric approach of generalized 
spectral analysis for the evolutionary time series [Qian and Chen 1996]. The Wigner distribution in 
quantum mechanics and the Gabor representation in communication theory were pioneered by two 
Nobel laureate physicists [Wigner 1933, Gabor 1948]. Applied scientists in signal processing have 
made fundamental progress in developing efficient algorithms of time-frequency distribution series 
[Qian and Chen 1994 a,b, 1996]. These are powerful tools in our studies of economic chaos [Chen 
1994,1995,1996]. 

In dealing with problems of growing trends and strong noise, we apply the Hodrick-Prescott 
(HP) filter for trend-cycle decomposition [Hodrick and Prescott 1981] and time-variant filters in 
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Gabor space for pattern recognition [Qian and Chen 1996, Sun et. al. 1996].  We got clear signals of 
low-dimensional color chaos from Standard & Poor stock market indicators. The chaos signals can 
explain about 70 percent of stock variances from detrended cycles. Its characteristic period is 
around three to four years. Their correlation dimension is about 2.5. The time paths of their 
characteristic period is useful in analyzing cause and effect from historical events. Clearly, the 
color-chaos model describes more features of market movements than the popular random-walk 
model.  

The newly decoded deterministic signals from persistent business cycles reveal new sources of 
market uncertainty and develop new ways of economic diagnostics and risk analysis. Friedman's 
argument against irrational speculators ignore the issue of information ambiguity in evolving 
economy and financial risk for rational arbitrageurs [Friedman 1953]. A nonlinear pattern in the 
stock market may not be wiped out by market competition because complexity and diversity in 
market behavior are generated by changing uncertainty, nonlinear overshooting, and time-delays in 
learning and feedback mechanism. 
 
 
II. Roles of Time-Scale and Reference-Trend  

 in Representation of Business Cycles 

 

A distinctive problem in economic analysis is how to deal with growing trends in an aggregate 
economic time series. Unlike laboratory experiments in natural sciences, there is no way to 
maintain steady flows in economic growth and describe raw business-cycles by invariant 
attractors. Many controversial issues in macroeconomic studies, such as noise versus chaos in 
business cycles, are closely related to competing detrending methods [Chen 1988, 1993, Ramsey, 
Sayers and Rothman 1990, Brock and Sayers 1988].   

The first issue is the time scale in economic representation. A continuous-time representation in 
the form of [X(t), dX(t)/dt, . . ., dnX(t)/dtnn] is widely used in science and engineering. It is an 
empirical question whether the dynamical system can be well approximated by a low-order vector 
up to the n-th order of derivatives. In Hamiltonian mechanics, n is 1 for mechanical systems 
because its future movement can be determined by the Newton's law of motion in addition to initial 
conditions in position and momentum. It means that both level (position) and rate (velocity) 
information are important in characterizing the underlying dynamical system. Chaos theory in 
nonlinear dynamics further emphasizes the role of history because a nonlinear deterministic 
system is sensitive to its initial conditions. In business-cycle studies, there is no consensus on the 
order n. The martingale theory of the stock market simply ignores the path-dependent information 
in the stock market. We will demonstrate that both level and rate information are important when 
correlations are not short during business cycles. 

Econometricians often use differences in the form of [X(t), ∆X(t), . . ., ∆mX(t)] in parametric 
modeling. We should note that these two representations are not equivalent. Mathematically, a one-
dimensional differential equation dX(t)/dt = F[x, t] can be approximated by m-th order difference 
equations. Numerically, m should be larger than one hundred when the numerical error is required 
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to be less than one percent. Many econometricians favor the discrete-time difference equations 
instead of the continuous-time differential equations because of its mathematical convenience in 
regression analysis. However, a discrete-time representation is a two-order lower approximation of 
a similar continuous-time system.  

The issue of choosing an appropriate time-sampling rate is often ignored in econometric 
analysis. Chaotic cycles in continuous-time may look like random if the sampling time-interval is 
not small compared to its fundamental period of the cycles. This issue is important in pattern 
recognition. For example, annual economic data are not capable of revealing the frequency pattern 
of business cycles. Numerically, a large time unit such as the annual time-series can easily obscure 
a cyclic pattern in correlation analysis of business cycles. 

A related issue is how to choose a reference-trend or a proper transformation to simplify the 
empirical pattern of business cycles. Suppose, a new vector [G(t),  C(t)] is defined in terms of the 
original vector [X(t), dX(t)/dt]. If C(t) is a bounded time series, then C(t) has a chance to be described 
by a deterministic attractor, or a stationary stochastic process. In business-cycle studies, finding a 
proper transformation is called the problem of trend-cycle decomposition or simply detrending.  In 
astronomy, the critical trend-cycle problem was solved by Copernicus and Kepler by using a 
heliocentric reference system. In econometrics, the choice of observation reference is an open issue 
in business cycle theory [Zarnowitz 1992]. 

The core problem in economic analysis is not noise-smoothing but trend-defining in economic 
observation and decision making. A short-time deviation may be important for speculative 
arbitrageurs while the shape of the long-term trend can be critical to strategic investors. Certainly, 
investors in a real economy have diversified strategies and time-horizons. The interactive nature of 
social behavior often form some consensus on business cycles. This fact suggests that a relative 
preferred reference exists in economic studies. We will show that the HP filter in trend-cycle 
decomposition is a promising way to define the growth trend in business cycles. 

It is the theoretical perspective which dictates the choice of a detrending approach. Econometric 
practice of pre-whitening data is justified by equilibrium theory and convenient for regression 
analysis. For example, a Frisch-type noise-driven model of business cycles will end with white 
noise after several damped oscillations [Frisch 1933]. For pattern recognition, a typical technique in 
science and engineering is to project the data on some well-constructed deterministic space  to 
recover possible patterns from empirical time series. Notable examples are the Fourier analysis and 
wavelets.  

There are two criteria in choosing the proper mathematical representation: mathematical 
reliability and empirical verifiability. Unlike experimental economics, macroeconomic time series 
are not reproducible in history. Traditional tests in econometric analysis have limited power in 
studies of an evolutionary economy containing deterministic components. For example, testing the 
whiteness of residuals or comparing mean squared errors have little power when the real economy 
is not a stationary stochastic process. A good fit of past data does not guarantee the ability for better 
future predictions. The outcome of out of sample tests in a simulation experiment depends on the 
choice of testing period, because structural changes vary in economic history.   
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To avoid the above problems in time-frequency analysis, we will use historical events as 
natural experiments to test our approach. Future laboratory experiments are possible in testing the 
martingale model and the color-chaos model in market behavior. 
 
 
III. Trend-Cycle Decomposition and Time-Window in Observation 
 

The linear detrending approach dominates econometric analysis because of its mathematical 
simplicity. There are two extreme approaches in econometric analysis: The trend-stationary (TS) 
approach of log-linear detrending (LLD) and the difference-stationary (DS) approach of first 
differencing (FD) [Nelson and Plosser 1982]. 
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A compromise between these two extremes is the HP filter [Hodrick and Prescott 1981]. The 

HP smooth growth trend { HPs = G(t) } is obtained by minimizing the following function:  
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Here, λ is 1,600 for quarterly data and 14,400 for monthly, suggested by Kydland.  LLD cycles of 
XLLDc(t) are residuals from log-linear trend. LLD trend can be considered as the limiting case of the 

HP trend when λ goes to infinity for logarithmic data.  
In principle, a choice of observation reference is associated with a theory of economic 

dynamics. Log-linear detrending implies a constant exponential growth which is the base case in 
the neo-classical growth theory. The FD detrending produces a noisy picture that is predicted by 
the geometric random walk model with a constant drift (or the so-called unit-root model in 
econometric literature). The efficient market hypothesis simply asserts that stock price movement is 
a martingale which is unpredictable in finance theory.   

Economically speaking, the FD detrending in econometrics implies that the level information in 
price indicators can be ignored in economic behavior. This assertion may conflict with many 
economic practices, because traders constantly watch economic trends, no one will make an 
investment decision based only on  the current rate of price changes. Most economic contracts, 
including margin accounts in stock trading, are based on nominal terms. The error-correction 
model in econometrics tried to remedy the problem by adding some lagged-level information, such 
as using  a one-year-before level as an approximation of the long-run equilibrium [Baba, Hendry, 
and Starr 1992]. Then comes the problem of what is the long-run equilibrium in the empirical sense. 
Option traders based on the Black-Scholes model find that it is extremely difficult to predict the 
mean, variance, and correlations from historical data [Merton 1990]. A proper decomposition of 
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trend and cycles may find an appropriate scheme to weigh short-term and long-run impact of 
economic movements in economic dynamics. 

From the view of complex systems, the linear approach is not capable of describing complex 
patterns of business cycles [Day and Chen 1993]. We need a better alternative of detrending. 
Statistically, a unit-root model can be better described by a nonlinear trend [Bierens 1995]. The 
question is what kind of trend is proper for catching the pertinent feature of the underlying 
mechanism. We can only solve the issue by comparing empirical information revealed from 
competing approaches.  

The essence of trend-cycle decomposition is to find an appropriate time-window, or 
equivalently a proper frequency-window, in observing non-stationary movements. From the view of 
signal processing, log-linear detrending is a low-pass filter or wave-detector, while first 
differencing is a high-pass filter or noise-amplifier. Obviously, the FD filter is not helpful for 
detecting low frequency cycles. 

Early evidence of economic chaos is found in TS detrended data [Barnett and Chen 1988, Chen 
1988]. The main drawback of LLD detrending is its over-dependence of historical boundaries while 
the DS series is too erratic by amplifying high frequency noise [Friedman 1969]. The HP filter has 
two advantages. First, it is a localized approach in detrending without the problem of boundary-
dependence. Second, its frequency response is in the range of business cycles [King and Rebelo 
1993]. Some economists argue that the HP filter may transform a unit-root process into false cycles. 
A similar argument is also valid for the unit-root school, because the FD filter obscures complex 
cycles by amplifying random noise. No numerical experiment can solve a philosophical issue. In 
the  history of science, the choice of a proper reference can only be solved as an empirical issue, i.e. 
whether we can discover some patterns and regularities that are relevant to economic reality. We 
will see that introducing a time-frequency representation and the HP filter does reveal some 
historical features of business cycles, that are not observable through the FD filter. 

In this report, we will demonstrate tests of two monthly time series from the stock market 
indicators: FSPCOM is the Standard & Poor 500 stock price composite monthly index, and FSDXP, 
the S&P common stock composite dividend yield. The source of the data is the Citibase. The data 
covers a period from 1947 to 1992. To save space, we only give the plots from the FSPCOM data. 
More tests in macroeconomic aggregates are reported elsewhere [Chen 1994, 1995, 1996].  

The role of detrending in shaping characteristic statistics can be seen in Table I. For most 
economic time series, the magnitude of variance (a key parameter in asset pricing theory) and the 
length in autocorrelations (a key parameter in statistical tests) are closely associated with the 
characteristic time-window of the underlying detrending method. The variance observed by HP 
detrending is about 5.7 times of that of FD, while the HP decorrelation length is 4.6 times of FD.  
Their ratio in variance is roughly in the same order as the ratio in the decorrelation length.  

Table 1 

Table I. Detrending statistics for FSPCOMln monthly 

__________________________________________________________________________________

___ 
Detrending Mean STD Variance T0 (month) Pdc (year) 
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-------------------------------------------------------------------------------------------------------------------------------- 

FD  0.012 0.1123 0.0126 1.94 0.7 

HP   0.008 0.2686 0.0722 8.93 3.0 

LLD   0.427 0.3265 0.1066 85.6 28.5 

_________________________________________________________________________________ 
Here, T0  is the decorrelation length measured by the time lag of the first zero in autocorrelations; 

Pdc, the decorrelation period for implicit cycles: 04TPdc = .   

 
A typical example of an economic time series is shown in the logarithmic  FSPCOM [see Fig. 1]. 

The contrast between the erratic feature of the DS series and the wavelike feature of TS and HP 
cycles is striking. For example, their lengths of autocorrelations are greatly varied. The 
autocorrelation length is the largest for LLD cycles, shortest for FD series, and in between for HP 
cycles.   
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(1c). Autocorrelations of detrended series. The length of correlations varies for competing 
detrendings. 

 
Fig. 1. Fluctuation patterns from competing trend-cycle decompositions, including FD, HP, 
and LLD detrending, for the logarithmic FSPCOM monthly series (1947-92). N=552.   

 
IV. Instantaneous Auto-Correlations and Instantaneous Frequency  

 in Time-Frequency Representation 
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In spectral representation, a plane wave has an infinite time-span but a zero-width in 
frequency domain. In a correlation representation, a pulse has a zero-width time-span but a full 
window in frequency space. To overcome their shortcomings, the wavelet representation with a 
finite span both in time and frequency (or scale) can be constructed for an evolutionary time series. 
The simplest time-frequency distribution is the short-time Fourier transform (STFT) by imposing a 
shifting finite time-window in the conventional Fourier spectrum. 
The concepts of instantaneous auto-correlation and instantaneous frequency are important in 
developing generalized spectral analysis. A symmetric window in a localized time interval is 
introduced in the instantaneous autocorrelation function in the bilinear Wigner distribution (WD), 
the corresponding time-dependent frequency or simply time-frequency can be defined by the 
Fourier spectrum of its autocorrelations [Wigner1932]: 
  

τωτττω ditStStWD )exp()
2

(*)
2

(),( −−+= ∫  (4.1)   

 
Continuous time-frequency representation can be approximated by a discretized two-

dimensional time-frequency lattice. An important development in time-frequency analysis is the 
linear Gabor transform which maps the time series into the discretized two-dimensional time-
frequency space [Gabor 1946]. According to the uncertainty principle in quantum mechanics and 
information theory, the minimum uncertainty only occurs for the Gaussian function.  
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where t∆ measures the time uncertainty, f∆ the frequency uncertainty (angular frequency: 

fπω 2= ). 

Gabor introduced the Gaussian window in non-orthogonal base function h(t).  
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where ∆t is the sample time-interval, ∆w the sample frequency-interval, L the normalized Gaussian 

window-size, m and n the time and frequency coordinate in discretized time-frequency space [Qian 

and Chen 1994a]. 
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The discrete-time realization of the continuous-time Wigner distribution can be carried out by 
the orthogonal-like Gabor expansion in discrete time and frequency [Qian and Chen 1994b, 1996]1 
The time-frequency distribution series can be constructed as the decomposed Wigner distribution.  
 

 ),(),(
0

ωω tPtTFDS
D

dD ∑=  (4.5) 

  

where Pd (t, ω) is the d-th order of decomposed Wigner distribution, d is measured by the maximum 

distance between interacting pairs of base functions. The zero-th order of a time-frequency 

distribution series without interferences leads to STFT. The infinite order converges to the Wigner 

distribution including higher interference terms. For an applied analysis, 2nd or 3rd order is a good 

compromise in characterizing frequency representation without severe cross-term interference. In 

our studies, we take the highest order D=3. 
For comparison between the deterministic model and the stochastic model, we also 

demonstrate the time-frequency pattern of an AR(2) model of FD series. 
 
 )()2(]043.0[081.0)1(]043.0[265.0]002.0[006.0)( ttXtXtX µ+−−−+=  (4.6) 

 
Here, standard deviations are in parenthesis, the residual µ(t) is white noise, its standard deviation 
is:  σ = 0.033. 

The deterministic cycle is characterized by a narrow horizontal frequency band in time-
frequency space, while noise signals featured by drop-like images are evenly scattered in whole 
time-frequency space.  We can see that FD series are very noisy while HP cycles have a clear trace of 
persistent cycles in the range of business cycle frequency. Later we will show that a stationary 
stochastic model, such as an AR(2) model of FD series, has a typical feature of color noise without a 
continuous frequency-line in time-frequency representation. A noise-driven model such as an  AR 
or GARCH series can produce pseudo-cycles in Fourier spectrum, but cannot produce persistent 
cycles in time-frequency representation. 

The time-frequency representations of the logarithmic FSPCOM HP cycles and FD series are 
shown in Fig. 2.  

 

                                                                 
1 The numerical algorithm is called the time-frequency distribution series 
(TFDS).  The computer software is marketed by National Instruments under the 
commercial name of Gabor spectrogram as a tool kit in the Lab View System. 



 11 

0

0.1

0.2

0.3

0.4

0.5

1950 1960 1970 1980 1990

FSPCOMln HP Cycles

t

f

 

(2a). FSPCOMln HP cycles.  
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(2c). AR(2) model of FSPCOMln FD series. N=512.  

  
Fig. 2. Time-frequency representation of empirical and simulated series from 
FSPCOMln detrended data. The X axis is the time t (or number of points); the Y axis is 
frequency f, the Z axis is the intensity of TFDS distribution. 

 
For the deterministic mechanism, signal energy or variance is highly localized in time-

frequency space. For example, the signal of FSPCOM HP cycles are concentrated in the lowest 
quarter frequency zone. Its characteristic period Pc is 3.9 years; 89 percent of its variance is 

concentrated within a bandwidth of a 12 percent frequency window, 73 percent within a 5 percent 
frequency window.  
  
 
V.  Time-Variant Filter in Gabor Space 
 

The task of removing background noise is quite different in the trajectory representation and in 
time-frequency representation. It is very difficult to judge a good regression simply based on a 
residual test in econometrics. It is much easier to examine the linear Gabor distribution in the time-
frequency space. We want to find a simple way to extract the main area with a high energy 
concentration, which can be reconstructed into a time series resembling main features of the 
original data. We will see if the filtered time series can be described by a simple deterministic 
oscillator. 

For a stationary stochastic process, a linear filter can be applied. For an evolutionary process 
containing both deterministic and stochastic components, a time-variant nonlinear filter does a 
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better job. The simplest time-variant filter is a mask function that mark the boundaries of the energy 
concentration area.  

It is much easier to construct a time-variant filter based on the Gabor transform than on the 
Wigner transform, because the Gabor transform is linear. The original time series Xo(t) can be 

represented by a M*N matrix in Gabor space. Its element C(m, n) has M points in the time frame and 
N points in the frequency frame. There is no absolute dividing line between cycles and noise in 
Gabor representation. We can define the thresholds of a peak distribution in frequency space at 

each time-section n. Correspondingly, the constructed mask operator Φ  provides a simple time-
varying filter that sets all outside Gabor coefficients to zero. To ensure the reconstruction is as close 
as possible to the ideal signal within the masked region in Gabor space, an iteration procedure is 
employed. After k-th iteration, we obtain the reconstructed time series Xg(t): 

 

)()(}{)( 1 tXtXtX kk
g Θ=ΓΦΓ= −  (5.1) 

 

Where Γ  and 1−Γ denote a forward and inverse Gabor transform in discrete time-frequency 

lattice space respectively. This process will converge as long as the maximum eigenvalue of the 
matrix  }{ 1 ΓΦΓ=Θ −  is less than one [Sun, Qian, et al 1995]. Our numerical calculation indicates 

that Θ converges in less than five iterations. The construction of the mask function in Gabor space 

is determined by the peak time-section of Gabor distribution [see Fig.3].  
In order to define the boundaries of a time-varying filter, the cut-off threshold Cth at each time-

section is introduced in the following way:  

 

stdmeanth CHCC *+=  (5.2) 

 
Here, H is the only adjustable parameter in setting the mask function. meanC  is the mean value of 

|),(| nmC ; stdC , the standard deviation of |),(| nmC , all calculations are conducted at the peak 

time-section where  |),(| nmC  reaches the maximum value.   
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(3b). Mask function M(n, m) for FSPCOM. The tested time series is studied under the one fourth 
frequency window. For reducing the boundary distortion, the reflective boundaries at the both side 
of the data are added. The window size is the same as the Gaussian window of length L in 
Eqn.(3.2).  So, the total length of data for Gabor transform is: N'=N/4+L*2. Here, N=552, L=64, the 
time sampling rate ∆µ=8, and C(n, m) is a matrix of 17*42. H=0.5.  
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Unfiltered & Filtered Gabor Distribution

 

(3c). The Gabor distribution for the unfiltered (upper) and filtered (lower ) data. 

 

Fig. 3. Construction and application of the time-variant filter in Gabor space. Unfiltered 
and filtered Gabor distribution for FSPCOMln HP cycles are demonstrated.  

 
From Table II, we can see that the decomposition of variance is not sensitive to the choice of H, 

because the signal energy is highly concentrated in the low frequency band and the energy surface 
is very steep in the Gabor space. The variance of the filtered signal accounts for about 70 percent of 
total variance. We chose H=0.5 in later tests.  
 

Table II. Decomposition of FSPCOMln data for varying H 

_______________________________________________________________________ 

 H η υ  (%) CCgo 

----------------------------------------------------------------------------------------------------------- 

 0.0 0.8435 71.2 0.8595 

 0.5 0.8281 68.6 0.8471 

 1.0 0.8256 68.2 0.8461 

________________________________________________________________________ 
The filtered HP cycles have clean features of a deterministic pattern while the filtered auto-

regressive AR(2) series still has a random image [see Fig. 4]. Later we will see that the filtered HP 
cycles with a persistent frequency can be described by a color chaos with a low dimensionality. 

Several statistics are calculated between the filtered and the original time series: η is the ratio of 
their standard deviation; υ, is the percentage ratio of variance; CCgo is their correlation coefficient. 
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(4a). The original and filtered FSPCOM HP cycles. η=82.8%;  CCgo=0.847. 

-1

-0.5

0

0.5

1

0

A
C

(I
)

20 40 60 80 100

I

FSPCOMln Original & Filtered HP Cycles 

HPCg

HPCo

-

 
(4b). Autocorrelations of the original and reconstructed series. The time lag T0 of the first 

zero in autocorrelations gives a rough measure of the cycle. The decorrelation Period: 

04TPdc =  =3.3 years (H=0.5).  

 
Fig. 4. The original and reconstructed time series of FSPCOMln HP Cycles.  

 
The shape of the mask function is determined by the intensity of Gabor components. We should 

point out that a conventional test, such as the Durbin-Watson residual test, may not be applicable 
here, because residuals may be color noise. Our main target is catching the main deterministic 
pattern in the time-frequency space, not a parametric test based on regression analysis.  

The reconstructed HPCg time series reveals the degree of deterministic approximation of 
business fluctuations: The correlation coefficient between the filtered and original series is 0.85. 
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Their ratio of standard deviation, η, is 85.8% for FSPCOM.  In other words, about 73.7% of variance 
can be explained by a deterministic cycle with a well-defined characteristic frequency, even though 
its amplitude is irregular. This is a typical feature of chaotic oscillation in continuous-time 
nonlinear dynamical models.  

We can see that the phase portrait of filtered FSPCOMln HP cycles has a clear pattern of chaotic 
attractors, while the filtered AR(2) model fitting FSPCOMln FD series still keeps its random image 
[Fig.5]. 
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(5a). FSPCOMln HPc unfiltered series. T=60. Some pattern is emerged behind a 

noisy background. 
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(5b). FSPCOMln HPc filtered series. T=60. Clear pattern of strange attractor can be 

observed. 
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(5c). FSPCOMln FD series. T=40. The cloud-like pattern indicates the dominance of 

high frequency noise.  
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(5d). Filtered AR(2) series. T=5. No deterministic structure can be identified. 

 
Fig. 5. Patterns of phase portraits for FSPCOMln series. 

 
From Fig. 5, we also confirm our previous discussion in section 2 that FD detrending simply 

amplifies high frequency noise while HP detrending plus the time-variant filter in Gabor space pick 
up deterministic signals of color chaos  from noisy data. 
 
 
 
VI. Characteristic Frequency and Color Chaos  
 

Time frequency representation contains rich information of underlying dynamics. At each 
section of time t, the location of the peak frequency f(t) can be easily identified from the peak of 
energy distribution in the frequency domain. If the time path of f(t) forms a continuous trajectory, we 
can define a characteristic frequency fc from the time series. Correspondingly, we have a 
characteristic period Pc (= 1/fc). Stochastic time series such as the auto-regressive (AR) process 

cannot form a continuous line in time-frequency representation.  
The empirical evidence of color chaos is further supported by consistent results from 

complementary nonlinear tests of filtered HP cycles (Table III). 
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Table III 

Table III. Characteristic statistics for stock market indicators 

_________________________________________________________________________________ 

Data η υ(%) CCgo Pc φ (%) Pdc λ-1 µ  

---------------------------------------------------------------------------------------------------------------------------------- 

FSPCOM 0.828 68.6 0.847 3.6 25.9 3.3 5.0 2.5 

FSDXP 0.804 64.6 0.829 3.5 27.7 2.9 6.9 2.4 

__________________________________________________________________________________ 
Here, η is the ratio of standard deviations of the reconstructed series )(tSg  over the original HP 

cycles )(tSo ; υ, their percentage ratio of variance; goCC , their correlation coefficient [also in the 

Table II ]. Pc, is the mean characteristic period from time-frequency analysis; dcP , the decorrelation 

period from correlation analysis; φ, is the frequency variability (in time) measured by the percentage 
ratio of the standard deviation of fc to the mean value of fc over time evolution; λ is the Liapunov 

exponent, its reverse λ-1 is also a measure of a time scale, which is in the same range of dcP  for 

deterministic cycles. µ is the correlation dimension for attractors. All the time unit here is in years.  
 

Characteristic frequencies of deterministic cycles are found in HP detrended cycles. Their 
frequency variability, measured by the ratio of standard deviation to mean frequency, are about 25 
percent over a history of 45 years. The frequency stability of business cycles in the stock market is 
quite remarkable. The bandwidth of the characteristic frequency fc for HP cycles is just a few 
percent of the frequency span of white noise. This is strong evidence of economic color chaos even 
in a noisy and changing environment.  

From Table III, we can see that FSPCOM and FSDXP are quite similar in frequency pattern and 
dimensionality. The characteristic period Pc from the time-frequency analysis and the decorrelation 
period Pdc from the correlation analysis are remarkably close. It is known that a long correlation is 

an indicator of deterministic cycles [Chen 1988, 1993]. However, time-frequency analysis provides a 
better picture of persistent cycles in business movements than correlation analysis and nonlinear 
analysis based on time-invariant representations.  

The frequency patterns of the stock-market indexes disclose a rich history of market movements 
[Fig.6]. 
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(6a). Frequency stability under historical shocks. The time path of characteristic period 

cP  for FSPCOM & FSDXP HP cycles. N=552.  
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(6b). Filtered AR(2) series. N=512. H=0.5. 

 
Fig. 6. Time paths of instantaneous frequencies. Persistent cycles of FSPCOMln and 
FSDXP HP cycles have stable characteristic frequency over time. Filtered stochastic 
series has no trace of persistent cycles. 

 
The extraordinary resilience of the stock market can be revealed from the stable frequency 

pattern under the oil-price shocks in 1973, 1979 and the stock-market crash in October 1987. These 
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events generated only minor changes in the characteristic period Pc for FSPCOM and FSDXP 

indexes.  
Economic historians may use the Pc path as a useful tool in economic diagnosis. After a close 

examination of Fig. 6, we found that the frequency shifts of S&P indexes occurred after the oil-price 
shock in 1973, but happened before the stock market crash in 1987. If we believe that the cause of an 
event always comes before the effect, then our diagnosis of these two crises would be different. The 
oil price shocks were external forces to the stock market, while the stock market crash resulted from 
an internal instability. 

Our findings of nonlinear trend and persistent cycles reveal a rich structure from stock market 
movements. For example, the equity premium puzzle will have a different perspective because the 
frequency pattern of consumption and investment are not similar to that of stock-market indicators 
[Mehra and Prescott 1985, Chen 1996]. We will discuss the issue elsewhere. 
 
 
VII. Risk, Uncertainty, and Information Ambiguity 
 

Franck Knight made a clear distinction between risk and uncertainty in the market [Knight 
1921]. Keynes also emphasized the unpredictable nature of "animal spirits" [Keynes 1921, 1936]. 
From the view of nonequilibrium thermodynamics, uncertainty is caused mainly by time evolution 
in open systems [Prigogine 1980]. 

The random-walk model of asset pricing has two extreme features. On one hand, the future 
price path is completely unpredictable. On the other hand, the average statistics are completely 
certain because the probability distribution is known and unchanged. According to equilibrium 
theory, only measurable risk with known probability exists in the stock market, no uncertainty with 
unknown and changing probability is considered in asset pricing models. The static picture of 
CAPM ignores the issue of uncertainty raised by Knight and Keynes. 

Both practitioners and theoreticians are aware of the impact of business cycles. Fischer Black, 
the originator of the geometric random walk model in option pricing theory, made the following 
observations (the underline is added by the author) [Black 1990]: 
 

"One of the (Black-Scholes) formula's simple assumption is that the stock's future 
volatility is known and constant. Even when jumps are unlikely this assumption is 
too simple. Perhaps the most striking thing I found was that volatilities go up as a 
stock prices fall and go down as stock price rise. Sometimes a 10% fall in price 
means more than a 10% rise in volatility . . . . . . After a fall in the stock price, I will 
increase my estimated volatility even where there is no increase in historical 
volatility." 

 
From Black's observation, the implied volatility, the only unknown parameter in option pricing 

theory, does not behave as a slow changing variable, that is a necessary condition for meaningful 
statistic concepts of mean and variance, but acts like a fast changing variable, such as trend-
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shifting and phase-switching in business cycles [see also Fleming, Ostdiek, and Whaley 1994]. 
Clearly, the up-trend or down-trend of price levels strongly influence the market behavior, even 
when historic variance may not change significantly. Black's observation of changing implied 
volatility helps our studies of nonlinear trends and business cycles in the stock market. We will 
discuss the issue in the near future. 

In the equilibrium theory of the capital asset pricing model (CAPM), risk is represented by the 
variance of a known distribution of white noise. From our analysis, the risk caused by high 
frequency noise only accounts for about 30 percent of variance from FSPCOM and FSDXP HP 
cycles. 

According to our analysis, there is an additional risk generated by a chaotic stock market. 
About 70 percent of variance from HP detrended cycles is associated with color chaos whose 
characteristic frequency is relatively stable. For the last 45 years, the variability of the characteristic 
period for FSPCOM and FSDXP is less than 30 percent. From this regard, the discovery of color 
chaos in the stock market indicates a limited predictability of turning points. We can develop a new 
program of period-trading rather than a level-trading strategy in investment decision and risk 
management. The frequency variability implies a forecasting error in a range of a fraction of the 
observed characteristic period. Clearly, the knowledge of HP cycles does little help for short-term 
speculators. Further study of higher-frequency data is needed for investors. 

 Recent literature of nonstationary time-series analysis such as ARCH and GARCH models 
focus on the issue of a changing mean and variance in the random-walk model with a drift. We 
found two more sources of uncertainty:  changing frequency and shifting trend in an evolving 
economy. These uncertainties severely restrict our predictability of a future price trends and future 
frequency of business cycles. Therefore, we have a new understanding of the difficulties in 
economic forecasting. 

In the two-dimensional landscape of time-frequency representation, there is no absolute 
dividing line between stochastic noise and deterministic cycles. The concept of perfect information 
and incomplete information can only be applied when the risk can be measured by a known 
distribution, such as a normal distribution in CAPM or a log-normal distribution in option pricing 
theory. The question of information ambiguity arises in signal processing when information is a 
mixture of deterministic and stochastic signals. Under the Wigner distribution, excess information 
with an infinite order of D coupling produces misleading interferences and false images. The real 
challenge in pattern recognition is searching relevant information from conflicting news and 
experiences. For example, the merger and acquisition in the capital market is a war game in the 
business world filled with conflicting and false information. That is why the stock market often 
overreacts to market news on merger and acquisition. 

From our analysis of historical events, the time path of stock prices is not a pure random-walk. 
Price history is a rich source of new information if we have the right tools of signal decoding. In 
balance, our approach of trend-cycle decomposition and time-frequency analysis increases a 
limited predictability of chaotic business cycles, and at the same time reveals two more 
uncertainties in nonlinear trends and evolving frequency. 
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The equilibrium school in finance theory emphasizes the forecasting difficulty caused by noisy 
environments, but ignores the uncertainty problem in evolving economies. 
 
 
VIII. Persistent Cycles and The Friedman Paradox  
 

A strong argument against the relevance of economic chaos comes from the belief that economic 
equilibrium is characterized by damped oscillations and absence of deterministic patterns. 
Friedman asserted that market competition will eliminate the destabilizing speculator, and 
speculators will lose money [Friedman 1953]. Friedman did not realize that arbitrage against a 
market sentiment is very risky if rational arbitrageurs have only limited resources [Shleifer and 
Summers 1990]. Friedman also assumed that winner-followers could perfectly duplicate winner's 
strategy. This could not be done for chaotic dynamics in an evolving economy.  

People may ask what will happen once the market knows about the limited predictability of 
color chaos in the stock market? At this stage, we can only speculate the outcome under complex 
dynamics and market uncertainty. We believe that the profit opportunities associated with color 
chaos are limited and temporary, but the nonlinear pattern of persistent cycles will remain in 
existence and perhaps evolve over time. 

Based on our previous discussion, we will point out two likely outcomes: co-existence of 
diversified strategies and persistence of chaotic cycles. There is no way to have a sure winner, 
because of trend uncertainty and information ambiguity. Nonlinear overshooting and time-delay in 
feedback may actually create the chaotic cycles in the market dynamics [Chen 1988, 1993, Wen 
1993]. 

There are several factors that may prevent wiping out the persistent pattern of color chaos. First, 
people are incapable in distinguishing fundamental movements and sentimental movements in 
price changes, especially when facing a growing trend. The same argument on a monetary veil of 
real income caused by inflation can be applied to a price veil of stock value caused by a changing 
market sentiment along with an evolving economic growth. Second, information ambiguity is 
caused by a limited time-horizon in observation of complex systems. Bounded rationality is rooted 
not only in limited computational capacity, but also in dynamic complexity [Prigogine 1993]. 

Winner-following or trend-chasing behavior may change the amplitude or frequency of a color 
chaos, but the chaotic pattern will persist in a nonlinear and non-equilibrium world.  
 
 
IX. Conclusions 
 

There is no question that external noise and measurement errors always exist in economic data. 
The questions are whether some deterministic pattern and dynamical regularities are observable 
from the economic indicators and whether economic chaos is relevant in economic theory [Granger 
and Teräsvirta 1993]. Our answer is yes if the color-chaos model is addressing the empirical pattern 
of business cycles.  
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From our empirical analysis, stock market movements are not pure random-walks. A large part 
of stock-price variance can be explained by a color-chaos model of business cycles. Its characteristic 
frequency is in the range of business cycles. The frequency stability of the stock market is 
remarkable under historical shocks. The existence of persistent chaotic cycles reveals a new 
perspective of market resilience and new sources of economic uncertainties. To observe chaotic 
patterns of business cycles, a proper trend-cycle decomposition and a proper time-window is the 
key in economic signal processing. We need a modified theory of asset pricing in a chaotic stock 
market. 

A new way of thinking needs new representation. From business practice, it is known that the 
time-window plays a critical role in evaluating key statistics, such as mean, variance, and 
correlations in asset pricing. Under a coherent wave representation, such as the case in quantum 
mechanics and information theory, the frequency-window is closely related to the time-window 
according to the uncertainty principle [Gabor 1946]. That is why the joint time-frequency 
representation is essential for time-dependent signal processing.  

Like a telescope in astronomy or a microscope in biology, time-frequency analysis opens a new 
window of observing evolving economies. As a building block of nonlinear economic dynamics, the 
color-chaos model of stock-market movements may establish a link between business-cycle theory 
and asset-pricing theory. 
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