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Abstract

Empiricd and theoreticd invedtigations of chaotic phenomena in
macroeconomic systems are presented. Basic issues and techniques in &sting
economic aggregate movements are discussed. Evidence of low dimensiond
drange attractors is found in severd empiricd monetary aggregetes. A
continuous time deterministic modd with delayed feedback is proposed to
describe the monetary growth. Phase trangtion from periodic to chaotic motion
occurs in the modd. The modd offers an explanation of the multiperiodicity and
irregularity in business cycles and of the low-dimensiondity of chaotic monetary
attractors. Implications in monetary control policy and a new approach to
forecasting business cycles are suggested.
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In recent years, there has been rapid progress in the studies of deterministic chaos,
random behavior generated by determinigic sysems with low dimensondity. This
progress has been made not only in theoretical modelling, but dso in experimentd testing
[Abraham , Gollub, and Swinney 1984]. Chaotic models have been applied to a variety
of dynamic phenomena in the areas of fluid dynamics, optics, chemigry, climate and
neurobiology. Applications to economic theory have aso been developed, especidly in
business cycle theory [seereview article: Grandmont and Magrange 1986].

Over the last century, the nature of business cycles has been one of the mogt
important issues in economic theory [Zarnowitz 1985]. Business cycles have severd
puzzling features. They have dements of a continuing wave-like movement; they are
partidly erratic and at the same time seridly correlated. More than one periodicity has
been identified in business cycles in addition to long growth trends. Most smplified
models in macroeconomics address one of these features [Rau 1974] , while system
dynamics models describe economic movements in terms of a large number of variables
[Forrester 1977].

Two basic questions arise in studies of business cycles. Are endogenous mechanism
or exogenous stochastics the main cause of economic fluctuations? And can complex
phenomena be characterized by mathematicd modes as smple as, say, those for
planetary motion and electricity?

The early deterministic approach to business cycles with well-defined periodicity
mainly discussed the endogenous mechanism of economic movements. A linear
deterministic modd was first proposed by Samuelson [1939], which generated damped
or explosve cycles. Nonlinearities were introduced in terms of limit cycles to explain the
f-sustained waveike movement in economics [Goodwin 1951].

A stochastic gpproach seems to be convenient for describing the fluctuating behavior
in economic systems [Osborne 1959; Lucas 1981]. The problem with the stochastic
models, however, lies in the fact that random noise with finite dday terms (usudly less
than ten lags in practice) only explains the short term fluctuaing behavior. Most
aggregate economic data are seridly correated not only in the short term but aso over
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long periods. Two methods deding with long correlations are often used: longer lags in
regresson studies and multiple differencing time series in ARIMA modes. Longer lags
require esdimating more "free parameters’, while ARIMA modds ae essentidly
whitening processes that wipe out useful information about deterministic mechanism.

Actudly, fluctuations may be caused by both intrindc mechanism and externd
shocks. An dternative to the stochastic approach with alarge number of variables and
parameters, is deterministic chaos, with few variables or low-dimensond strange
attractors [Schuster 1984]. This is the approach adopted in the present article. Newly
developed numerica techniques of nonlinear dynamics aso shed light on a reasonable
choice of the number of variables needed in characterizing a complex system.

An increasing number of works examine economic chaos. Most theoretical models
are based on discrete time [Benhabib 1980; Stutzer 1980; Day 1982; Grandmont 1985;
Deneckere and Pelikan 1986; Samuelson 1986], only one long wave modd is based on
continuous time [Rasmussen et a 1985]. On-going empirica studies are conducted by a
few economists [Sayers 1986; Brock 1986; Scheinkman and Le Baron 1987; Ramsey
and Yuan 1987; Frank and Stengos 1987]. Some clues of nonlinearities have been
reported, but no solid evidence of chaos has yet been found by these authors. Two
efforts were made to fit nonlinear discrete modds with empirica data [Dana and
Malgrange 1984; Candela and Gardini 1986], but the parameters were found outside the
chaotic regions.

We garted search for empirica evidence of chaos in economic time series in 1984.
The main features of determinigtic chaos, such as complex patterns of phase portraits and
positive Lyapunov exponents, have been found in many economic aggregete data such as
GNP and IPP, but most of our studies have faled to identify the dimensondity of
attractors because of limited data. Then we tested monetary aggregates at the suggestion
of W. A. Barnett. Low-dimensiond dtrange attractors from weekly data were found in
1985, and a theoretical modd of low-dimensionad monetary attractors was developed in
1986 [Chen 1987]. A brief description of comprehensive studies of economic chaos is

presented here for generd readers.
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In this article, a short comparison between stochastic and deterministic models is
introduced. Positive evidence of low-dimensond strange attractors found in monetary
aggregates is shown by avariety of techniques. A continuous-time modd is suggested to
describe the delayed feedback system in monetary growth. The period-doubling route to
chaos occurs in the model [Feilgenbaum 1978]. The modd offers an explanation for the
low dimengondity of chaotic monetary time series and for the nature of business cycles
and long waves. Findly, the implications of determinigtic chaos in economics and

econometrics are discussed.

Simple pictures of deterministic and stochastic processes

To what extent economic fluctuations around trends should be attributed to
endogenous mechanism (described by deterministic chaos) or exogenous shocks
(described by stochastic noise) is a question that can be addressed by empirical tests.

There are at least four possble candidates in describing fluctuating time series: linear
stochastic process, discrete deterministic chaos, continuous deterministic chaos, and
nonlinear determinigtic chaos plus noise. The test of the lagt one is only in its infancy,
because a high level of noise will easily destroy the subtle Sgnd of determinigtic chaos.
We mainly discuss the firg three candidates here and give numerica examples of white
noise and determinigtic chaos as the background for further discussons. The linear
autoregressve AR(2) mode adopted in explaining the fluctuations of log linear detrended
GNP time series [Brock 1986] is demondrated as an example of a linear stochastic
process. For determinigtic chaos, two models are chosen: the discrete logistic mode
[May 1976], which is widdy used in population studies and economics, and the
continuous spird chaos model [Rosder 1976).

The time sequences of these models are shown in Figure 1. They seem to be equally
capable to describe economic fluctuations when gppropriate scales are used to match

red time series. But closer examination reved s the differences among them.
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Phase space and phase portrait

From a given time series X(t), an mdimensiona vector V(m,T) in phase space can
be constructed by the m-history with time delay T: V(m,T) = {X(t), X(t+T), . . , X[t+(m+
1T] }, where m is the embedding dimension of phase space [Takens 1981]. Thisis a
powerful tool in developing numerica dgorithms of nonlinear dynamics, since it is much
esser to observe only one varigble to analyze a complex system.

The phase portrait in two-dimensiond phase space X(t+T) versus X(t) gives clear
picture of the underlying dynamics of atime series. With the fixed point solution (the so-
cdled zero-dimensond attractor), the dynamica system is represented by only one point
in the phase portrait. For periodic solution (the one-dimensiond ettractor), its portraitisa



System Dynamics Review Evidence of Economic Chaos

closed loop. Figure 2 displays the phase portrait of the three models. The nearly uniform
cloud of points in Figure 2a closely resembles the phase portrait of random noise (with
infinite degree of freedom). The curved image in Figure 2b is characteridtic of the one-
dimensond unimoda discrete chaos. The spird pattern in Figure 2c is typicad of a
strange attractor whose dimengondity is not an integer. Its wandering orbit differs from

periodic cycles.
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Long-term autocorrelations

The autocorrdation function is another useful concept in andyzing time series. The

autocorreation function AC(1) is defined by
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AC(I) = AC(t-t) = COV [ X(t), X() ]/ E[ (X() - M)2] )

Where M is the mean of X(t) and cov[ X(t), X(t) ] is the covariance between X(t') and
X(t). They are given by

N
M=E[X®]={S X®}/N 2

t=1
CoV (X(t), X(t) ) = E[ (X(t) - M) (X(©) - M) ] 3)

It is known that the autocorrdation function of the periodic motion is periodic and
that of the white noise is a ddlta function. Figure 3 shows autocorrelaions of the AR(2)
process quickly decay to smdl disturbances. The autocorrelations of the logistic chaos
look the same as those of white noise. The Rosder attractor displays some resemblance
to periodic cycles. Its autocorrelaions have initia exponentia decay after a characteristic
decorrelation time Ty followed by wave-like fat tails. Ty is determined by the first

vanishing autocorrelations.
Fig. 3. Comparison
of the autocorrela- P——
tions of the three - ( Besier .
model solutions with A S ()
1,000 data points. [\ N
The time units are [ 7\ ~\
the same as in 1 \ / \\ ,/ \
Figure 1. ’I \ // \ / \

M M 'l‘lt\l‘ lnvj A. '1\4[‘ At

0. 00 100.00  200.00  300.00  400.00  500.00
I

Testing economic chaosin monetary aggr egates

Testing economic aggregate time series is a complex process, since they contain

growth trends. Not dl the techniquesin nonlinear dynamics developed by mathematicians
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and physcigs [Mayer-Kress 1986] are applicable to economic time series.  For
example, Poincare sections and spectral analyss used in physics require more than
severd thousand data points. Data quantity and data quality are crucid in applying the
currently existing techniques.

After introducing the monetary indexes, we focus on the testing and modelling of
monetary aggregates. The data source is Fayyad [Fayyad 1986].

Monetary aggregates

Observable indicators ae essentia to empiricd investigations. In smple physicd
sysems, some macroscopic quantities (such as mass and energy) can be smple
summeation of microscopic quantities. The right choice of aggregete indexes for economic
system remains an issue on which there is no consensus. For example, there are 27
component monetary assets - currency, traveler checks, demand deposit, Eurodollars,
money market deposit, saving deposit, Treasury securities, commercia paper, and so on -
according to the Federd Reserve's latest classfication of the American monetary system.
Four levels of smple-sum aggregate indexes, M1, M2, M3 and L, consisting of 6 to 27
monetary assets, are used by the Federal Reserve. There ae dso pardle theoreticad
indexes, such as Divisa monetary aggregates, initiated by W. A. Barnett. Better aggregate
indexes are needed to describe macroeconomic movements by smple mathematica
methods.

We tested 12 types of monetary index time series induding officd smple-sum
monetary aggregates (denoted by SSM), Divisa monetary demand aggregates (DDM),
and Divisa monetary supply aggregates (DSM); each yieded about 800 weekly data
points between 1969 and 1984. Five of them were successful in testing Srangeness.
dmple-sum SSM2, Divisa demand DDM2, DDM3, DDL and Divisa supply DSM2
monetary aggregaies. The behaviors of Divisa aggregates are very smilar. We only
discuss SSM2 and DDM2 here for brevity. The exponentia growth trends of these time

seriesare shown in Figure 4.
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Observation reference and first-difference detrending

Mathematicd models with attractor solutions can greetly smplify descriptions of
complex movements without obvious growth trends. The choice of detrending methods
basicdly is a choice of reference system or transformation theory. Detrending is a solved
problem for physcigs when observations of physicad sysems are conducted in
appropriate inertid reference systems. However, it is an unsolved issue in testing
economic time series. How to choose a reference system to observe the globa features
of economic movements is a critica question for identifying the deterministic mechanisms
of economic activities. We attempt to answer this question through numerica
experiments on empirica data

The percentage rate of change and its equivdent form, the logarithmic first
differences, are widdy used in fitting stochastic econometric models [Osborne 1959;
Friedman 1969]. It can be defined as follows:

Z@®) = InSt+1) - In S1) = In{ St+1) / St } (4)

where S(t) is the origind time series, and Z(t) is the logarithmatic firg difference. Its
Ineffectiveness for observing chaos will be shown later.

Log linear detrending and growth cycles
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We detrended data using bg linear detrending which was suggested by W. A.
Barnett. The same detrending was aso been used by other economists [Dana &
Malgrange 1984; Brock 1986]. In log linear detrending, we have

X(®) =InS(t) - (ko tkp t) (5)
or

S(t) =Spexp (ki 1) exp (X(0)) (6)

where S(t) is the origind time series, and X(t) is the resulting log linear detrended time
series, kg isthe intersection, k4 the constant growth rate, and S = exp( kg ).

After numerica experiments on a variety of detrending methods and economic time
series, we findly found that the percentage rate of change and its equivaent methods are
whitening processes based on short time scaling.  Log linear detrending, on the other
hand, retains the long term correlations in economic fluctuations, snce its time scae
represents the whole period of the available time series. Findings of evidence of
deterministic chaos mainly from log linear detrended economic aggregates lead to this
conclusion. Figure 5a shows the time sequences of the log linear detrended (denoted by
LD) monetary aggregates SSM2. Its dmost symmetric pattern of nearly equa length of
expangon and contraction is atypica feature of growth cyclesin economic systems. The
usud budness cycles are not symmetricd, their longer expansions and shorter
contractions can be obtained by superimposing a trend with constant growth rate adding
to the symmetric growth cycles. The logarithmic firg - difference time series (denoted by
FD) SSM2 is given in Figure 5b as a comparison. The latter is asymmetric and more

aratic.

10
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Empirical evidence of deterministic and stochastic processes

Based on the phase portrait and autocorrelation andysis, we can easly distinguish
qualitatively a stochadtic process from a deterministic one. A comparison between IBM
daily stock returns and monetary aggregates follows.

Figure 6a presents the phase portrait of detrended monetary aggregates LD SSM2.
It rotates clockwise like the spird chaos in Fig. 2c. The complex pattern is a potentia
indication of norlinear deterministic movements and eiminates the possbilities of white
noise or smple periodic motions. The phase portrait of IBM daily stock returns is shown
in Figure 6b. It dosdy resembles Gaussan white noise. It is congstent with previous
findings in economics [Osborne 1959; Fama 1970]. The autocorrdations of the
detrended time series are shown in Figure 7. Readers may compare these with the
autocorreationsin Figure 3.

If we approximate the fundamental period T by four times the decorrelation time Ty,
as in the case of periodic motion, then, T, is about 4.7 years for LD SSM2, which is

very close to the common experience of business cycles. We will return to this point

|ater.

11
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The numerical maximum Lyapunov exponent

Chaotic motion is sendtive to initid conditions. Its messure is the Lyapunov

exponents, which are the average exponentid rates of divergence or convergence of

12
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nearby orbits in phase space. Consider a very smal bal with radius T (0) at timet=0in
the phase space. The bal may digtort into an dlipsoid as the dynamicd system evolves.
Let the length of the i-th principal axis of this dlipsoid at timet beT (t). The spectrum of
Lyapunov exponents | ; from an initid point can be obtained theoreticaly by [Farmer

1982]

;= lm lm  {In[T0)/7i0)]/t} @)
@0 1()®0

The maximum Lyapunov exponent | (the largest among | ;) can be calculated

numericaly by the Wolf dgorithm [Wolf et d. 1985] where the limiting procedure is
approximated by an averaging process over the evolution time EVOLYV. Thisdgorithm is
aoplicable when the noise leve is smdl. A sketch of the dgorithm is shown in Figure 8.
The maximum Lyapunov exponent | is negative for stable systems with fixed points, zero

for periodic or quasiperiodic motion, and pogitive for chaos.
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In theory, the maximum Lyapunov exponent isindependent of the choice of evolution
time EVOLV, embedding dimenson m and time delay T. In praectice, the vaue of

Lyapunov exponent does relate to the numerical parameters. The range of evolution time

13
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EVOLV mug be chosen by numerical experiments. The positive maximum Lyapunov
exponents of the investigated monetary aggregates are dtable over some region in

evolution time shown in Figure 9. The numerica Lygpunov exponent is less sengtive to

the choice of embedding dimenson m. In our tests, wefixed ma 5andtimedday T a

5 weeks based on the numericd experiments. For example, the stable region of

EVOLYV is 45-105 weeks for SSM2 and 45-150 weeks for DDM2. Ther average

maximum Lyapunov exponent | over this region are 0.0135 and 0.0184 (bit per week),

respectively.

Fig. 9. The maxi-
mum Lyapunov ex-
ponents of log linear
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The characteristic decorrelation time Ty of the LD SSM2 is 61 weeks. The

reciproca of the maximum Lyapunov exponent | -1 (= 74.1) for LD SSM2 isroughly of

the same order of magnitude as the decorrelation time Ty [Nicolis and Nicolis 1986].

This relation does not hold for pure white noise.

The correlation dimension

The most important characteristic of chaos is its fractd dimenson [Mandebrot
1977] which provides a lower bound to the degrees of freedom for the system
[Grassberger and Procaccia 1983, 1984]. The popular Grassberger-Procacciaagorithm
edimates the fractd dimension by means of the correlaion dimension D. The correlation

integral C(R) is the number of pars of points in mdimensiona phase space whose

14
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disances between each other are less than R. For random or chaotic motion, the

corrdation integral G(R) may didribute uniformly in some region of the phase space
and has ascaing relation of RP. Therefore, we have

I, C,{(R) =D Iny R + congtant (8)

For white noise, D is an integer equa to the embedding dimenson m. For
deterministic chaos, D is less than or equd to the fractd dimension. The Grassberger-
Procaccia plots of InC(R) versus InR and dope versuslog R for LD SSM2 and LD
DDM2 are shown in Figures 10 and 11. For R too large, G,(R) becomes too saturate
at the tota number of data points (see the right-hand regions of Figures 10 and 11). For
R too smdll, the dgorithm detects the noise leve of the data (see the left-hand regions of
Figures 10 and 11). The exigtence of linear regions of intermediate R, which reflect the
fracta structure of the atractors, is shown in Figures 10a and 11a. The correlaion
dimension can be determined from the the saturated dope of the plateau region in Figures
10b and 11b.
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We found that the corrdaion dimensons of the invedigated five monetary
aggregates, including four Divisa monetary indexes and one officid smple-sum monetary
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index, were between 1.3 and 1.5. For other monetary aggregates, no correlation
dimension could be determined. These findings are consistent with previous studies in
economic aggregation theory and index number theory, which indicate that, except for
SSM2, Divisa monetary aggregates are better indexes than smple-sum monetary
aggregates [Barnett, Hinich, and Weber 1986; Barnett and Chen, 1988].

Some remarks about numerical algorithms

Given a determinigtic attractor whose correlation dimension is D, we first ask how
many data points are needed to determine the dimensionality D [Greenside et a. 1982].
The minimum data points Np with a D-dimensiond attractor can be estimated by scaling

relation HP, where the congtant h varies with attractors. Practically, we can only identify
low-dimensiond attractors with finite data sets, since N increases exponentidly with D.
For the Mackey-Glass mode [1977], 500 points are needed for D=2 and more than
10,000 points for D=3. In the Couette- Taylor experiment, N is about 800 points for
D=2.4, 40,000 points for D=3, and 50 hillion points for D=7 [Brandstater and Swinney
1987]. This issue seems to be ignored by some economidts. For example, in Brock
[1986], the correlation dimension of GNP with 143 quarterly data points was ca culated
under the extremely high embedding dimension (m=20) without showing the linear region
of the Grassherger-Procaccia plots. In our experience, the width of the linear region
ghrinks rapidly to zero when m increases beyond 6, as seen in Figure 10 and 11.
Practicdly, mis large enough when m reaches 2D+1.

There is another concern about the time expansion covered by the time series. In
physics experiments, the sampling rate is typicaly 10-100 points per orbit. Therefore,
100-1000 periods are needed for D=3 and 550 periods for D=2. We tested this
edimation in terms of the Mackey-Glass atractor. When the time dday tt is 17, its
corrdation dimenson D is 1.95 cdculated with 25,000 points [Grassberger and
Procaccia 1983]. To compared this result, we estimated the correlation dimension under

avariety of sampling rates and time periods. We find the error is within 1 percent with
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100 periods, 3 percent with 30 periods, 8 percent with 10 periods, and 18 percent with
5 periods when using 1000-3000 data points. Similar results are obtained for the model
we develop later.

It should be noted that there is no unique gpproach to identify deterministic chaos
with certainty. Severd agorithms that may be complementary were used in our tests. At
present, with only hundreds of data points, the discovery of economic strange attractors
whose dimensondity is higher than 3 is unlikely.

We can only speculate why we were unable to identify correlation dimensons for
other types of economic time series, such as GNP, IPP, and the Dow-Jones indexes, in
our numerica tests. Either their dimensions are too high to be estimated for limited data,

or their noise levels are too large to recover the subtle information of deterministic chaos.

A delayed feedback model of economic growth

Let us congder moddlling the low-dimensional monetary strange attractors as growth
cycles. There are severd problems to be solved: time scde, dynamic mechanism, and

system dahility.

Continuous versus discrete time

Current economic studies are dominated by discrete models. Economists favor
discrete models because economic data are often reported discretely in years, quarters
or months, and because discrete models are easier for numerical regresson. However,
continuous-time models are needed when the serid corrdation of disturbances can no

longer be neglected [Koopmans 1950]. The decorrelation time T4 of the

autocorrdations of time series sets a lower bound to the time unit of the discrete modd.

For atypical discrete modd, Ty is in goproximately the same length as the discrete time
unit. The decorrelaion time Ty for monetary attractors is more than 60 weeks. The time

scaes of discrete modds of deterministic chaos with one or two variables in busness
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cycle theory [Benhabib 1980; Day 1982; Grandmont 1985] are usudly larger than the
time scde of red busness cycles [Sms 1986; Sargent 1987]. Clearly, the smple
discrete modd is not appropriate to describe monetary growth cycles. A continuous
model is needed for the monetary time series.

The observed low corrdation dimenson of monetary aggregates sets additiona
condraints to the theoreticd moddling of growth cydes The minimum number of
degrees of freedom required for chaotic behavior in autonomous differentia equations is
3 [Ott 1981], s0 the fractd dimension will be larger than 2. Therefore, the driven
oscillator in the long-wave modd [Rasmussen, Mosekilde, and Sterman 1985] is not
applicablein our case.

After comparing the correation dimension and the phase portraits of existing models,
we believe that the differentia-delay equation isagood candidate for modelling monetary
growth. For smplicity, we congder only one variable here. The low dimensondity of
monetary attractors leads to the belief of the separability of the monetary deviations from
other macroeconomic movements that are integrated in the natura trends of monetary

growth rate.

Deviations from the trend and feedback behavior

The gpparent monetary strange attractors are mainly found in log linear detrended
data. This is an important finding to study control behavior in monetary policy. We
believe that the human &bility to manage information is limited even if decison makers
have "perfect information”. Economic behavior is more likdly following some smple rule
or procedure than providing globd optima [Simon 1979]. We assume that the genera
trends of economic development, the natural growth rate, are perceived by people in
economic activities as a common psychologica reference or as the anchor in obsarving
and reacting [Tversky and Kahneman 1974]. Adminidrative activities are basicaly
reactions to deviations from the trend. We choose the deviation from the natural growth
rate as the main variable in the dynamic mode of monetary growth.
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There are a number of differentia-delay modelsin theoretica biology and population
dynamics [Mackey and Glass 1977; May 1980; Blythe, Nishbet, and Gurney 1982,
Chow and Green 1985]. Our modd has a new feature which differs from previous
models of population dynamics: its wave pattern should be symmetric, because we are
dedling with detrended growth cycles The wave form of busness cycles is not
symmeric, snce they are observed in terms of the firg difference of logarithmatic
macroeconomic indexes or anud percent rate of growth. In an economic system moving
with a condant growth rate, we define the reference equilibrium state as zero. The

proposed equation is:

dX(O)/dt = aX(®) + F(X(tt)) 9)
F(X) = X G(X) (10)

X is here the relative growth index, which measures the deviation from the trend. t isthe
time delay, a is the expanson speed, F is the control function, and G is the feedback
function.

There are two competing mechaniams in the growth sysem. The fird is the
gimulative growth that is an ingtantaneous response to market demand. It is described by
the firg term on the right of Eqg. 9. A linear term for exponentia growth is used for
mathematical convenience. The second term represents the endogenous system control
described by the control function F. This congsts of feedback signd X(t-t) and
feedback function G. The time dday t exiss in the feedback loop because of
information and regulation lags.

The flow diagram and the symmetric control function

Figure 12 shows a flow diagram to describe our modd. There are severd
considerations in specifying F and G. We assume the control function F(X) has two
extrema at =X, for the control target floor and celling [Solomon 1981]. G(X) should be

nonlinear and symmetric, G(-X) = G(X), in order to describe the overshooting in
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economic management and the symmetry in growth cycles. These features are essentid

to generate complex behavior in the economic growth mode.

yail heed k i -
-l e . - ={ i) : The mearrre groes s

Lo Nl

In choosing the form of G, we do not use the polynomid function adopted in
previous modds with relaxation oscillations. Here, we suggest a smple exponentia
function to describe negative feedback reactions.

G(X)=-bexp(- X2/s2) (12)

where b isthe control parameter, s isthe scaling parameter, and the extrema of F(X) are

located at X, = +s / 2. Subgtituting Egs. 10 and 11 into Eq.9 gives the following
differentid-delay equation:

dX()/dt = aX(®) - bX(t-t) exp(-X(t-t)2/s2) (12)

We may change the scale by X=X's and t=t't, then drop the prime for convenience:

dX(O)/dt = at X(0) - bt X(t-1) exp(-X(t-1)2) (13)
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The rough behavior of the time dday Eq.13 can be discussed in terms of linear
gability anadlysis in determining the boundaries of damped and divergent oscillationsin the

parameter space.

The period-doubling route to chaos

We solved Eq.13 numerically by the predictor-corrector approach. Time sequences
and phase portraits of solutions with different b for fixed aand t are shown in Figures 13
and 14. In order to identify the route to chaos, the power spectra are shown in Figure
15. The period-doubling route to chaos is observed when parameter changes induce
bifurcations [Feigenbaum 1978]. One observes the fundamental fequency  and its
subharmonic frequency f, before and after trangtion to chaos in Figure 15c¢). In addition
to period-1 orbit P1 (limit cycle) in Figure 14a, period-2 orbit P2 in Figure 14b and
period-3 orbit P3in Figure 14d, we also observe P4, P8 and P6 in the regions close to
P2 and P3, respectively. The period-doubling route to chaos has dso been found in
other differentid-delay models with asymmetric solutions [May 1980].
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Phase transition and the pattern stability

A more useful gpproach is to study the waveform of business cycles, since spectra

andydsisdifficult to apply with the few cydes of data available in economic time series.

The observed periodic repetition often consists of basic patterns with severa shorter

cycles. We define the number of shorter cycles in a basic wave pattern as the cycle

number Ck. The badc pattern may have L large amplitude oscillations followed by S

smnal amplitude oscillations. Each periodic

date can be labded the cycle number,

Ck=L+S. For example, the periodic states in Figures 14a, 14b and 14d can be labeled

C1, C2, and C3, respectively.
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We should point out that the cycle number Ck is not necessarily equd to the period

number P. For example, the wave form of P6 is C3, and those of P4 and P8 are belong

to C2.

The phase diagram in terms of cycle number of the solutionsis useful in characterizing

economic long waves. Figures 16a and 16b display quditatively the phase diagram of

equation Eq. 13 in the parameter space. The broad diversity of dynamica behavior

includes steady dtate ST, limit cycle or periodic motion C1, and explosive solution EP.

The complex regime CP includes dternate periodic state ( C1, C2, C3 ) and chaotic

regime CH.

.
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When parameter vaues change within each region, the dynamic behavior is pattern-
sable, because the dynamic mode occupies a finite area in the parameter space. The
phase transition occurs when parameters cross the boundary between different phases. It
is observable when the wave pattern changes.

The notation of cycle number CK is introduced for possible application in analyzing
long waves. An interesting feeture of the modd is that only three periodic patterns C1,
C2 and C3 have been found. The modd gives an smple explanation of multiperiodicity in
business cycles.

It is speculated that no unique periodicity is involved in the business cyces In
addition to seasond changes, severd types of business cycles have been identified by
economigts [Van Duijn 1983]. The Kitchin cycles usudly last 35 years, the Juglar
cycles, 711 years, the Kuznets cycles, 15-25 years, and Kondratieff cycles, 45-60
years. Schumpeter suggested that these cycles were linked. Each longer wave may
consists of two or three shorter cycles. This picture can be described by the periodic
phase C2 or C3 in the CP regime of our modd. The irregularity in long waves can aso
be explained by the chaotic regime CH. Our mode gives a variety of posshilities of
periodicity, multiperiodicity and irregularity in economic higory, athough our data only
show the chaotic pattern in monetary movements.

It is widdy assumed that the long waves are caused by long lags, a belief coming
from the linear paradigm [Rostow 1980]. This condition is not necessary in our mode!,
because the dynamic behavior of Eq.13 depends both on a and bt. A strong
overshooting plus a short time delay has the same effect as a weak control plus a long
time delay, asmilar point dso made by Sterman [Sterman 1985].

This modd is so smple and generd, it could have gpplications beyond the monetary
system in the market economy we discussed here. For example, the growth cycles and
long waves caused by overshooting and time delay may aso happen in centraly planned

€Cconomies.

Smulating empirical cycles and forecasting basic trends
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In comparing mode-generated patterns with empirical data, we may confine our
experiments to certain regions of the parameter space. For example, we can estimate the

average period T from 4 times the decorrelation time Ty. The time delay t in monetary

control due to regulation lag and information lag is between 20 and 56 weeks [Gordon
1978]. If we estimate the time delay t to be 39 weeks, we canSmulate LD SSM2 time
series by the solution shown in Figure 13c, by setting t =39, a=0.00256, b=0.154, and
$=0.0125. The modd results match well the average amplitude Ay, decorrelation time
Tg, podtive maximum Lyapunov exponent |, and correlation dimenson D of the

empiricd time series.

The medium-term picture of smulated LD SSM2 in Figure 17 has well-behaved
pesks and troughs with a stable period. We can hardly imagine that its long-term
behavior is chaotic (see Figure 13c).

We tested the theoretical modds with power spectra and autocorrelation andyss.
The gpproximated period T of the chaotic solution can be estimated from Ty measured
by 35 cycles. It is close to the fundamenta period T; (=f;1) determined by power

spectra measured by 100 cycles with an error within 3 percent. For LD SSM2 time
series, the difference of Ty measured between 10-15 years is less than 5 percent. We

can obtain vauable information about the fundamenta period T; without knowing the

exact parameters of the deterministic mode!.

Implications for forecasting and control policy
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We should point out that the word chaos is mideading. Chaotic motion has both
regular and irregular characteristics. We prefer to refer to continuous deterministic chaos
as imperfect periodic motion , which has a stable fundamenta period but an irregular
wave shgpe and a changing amplitude. Actudly, we may often recover more information
from chaotic motion than from random movements. For example, econometric models
based on linear stochagtic processes mainly explain the variance of the residuas. They
offer little information about the trend and periods of business cycles beyond the short
term. We suggest a new forecasting approach based on detecting strangeness of growth
cycles. Although the long term prediction of the chaotic orbit is impossible from the view
of nonlinear dynamics, a medium-term prediction of gpproximate period T can be made
if we can identify strange attractors from the time series.

Let us discuss the meaning of the control parameters in Eq.12. When b=0, the
monetary devidtion from the naturd rate will grow at a speed €. We define a
characteridtic doubling time t; which measures the time needed to double the

autonomous monetary expanson X(t) without control. Smilarly, we can define a
characterigtic hdf time t,, which measures the time needed to reduce the money supply
to half its level when a=0 and X(t-t) reaches the control target X~ s/[J2=1.4 percent
per year. The same is true for the contraction movements, since the feedback function
G(X) is symmetric. Here t, = 5.2 year and t,=7.4 week for SSM2 in our smulation. We

see that even modest time delay and overshooting may generate cycles and chaos.

For policy consderations, we suggest that the fluctuations in money supply can be
moderated by reducing the time delay 1t or control parameter b. We can set 7.3 <t <
29.3 weeks while fixing a and b; or let 29.5 < {; < 108.7 weeks (when 1.51 > b >

0.41). These figures give a quditative picture of monetary target policy which seems

reasonable for the real economy.

Summary and discussion
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Empiricd evidence of low-dimendond drange atractors is found in log linear
detrended monetary aggregate data for the United States. These results are very
encouraging, snce new information is revealed about macroeconomic movements.

A differentid-delay equation with only two parameters is suggested to describe
monetary growth cycles. Sdlf-generated periodic, multiperiodic, and chaotic behaviors
are obsarved in the determinigtic model. This modd sheds light on the mechaniam of
business cycles and long waves : the nonlinearity and time delay in feedback control may
cause complex behavior. Although our mode is smple and exploratory, it has endbled us
to smulate the wave pattern and low dimensondity of monetary growth cycles.

We do not deny the complexity of socid phenomena and the usefulness of
disaggregated approaches in econometrics and system dynamics. Low-dimensiond
economic chaos is not only useful but dso testable in economic sudies. It can be
understood through the experience of physcids. It is often conveniert to introduce
projection operators which decompose the sysem into one low-dimensiona space,
whose movements can be effectively smplified, and one orthogond to it [Prigogine
1980]. In practice, the right choice of the projection operator can only be made by
empirica tests. Our work, together with previous efforts in sudy of complex systems,
srongly supports the hope that socia phenomena can be quantitatively described by
smple mathematica models in some aspects. The key issues are which pertinent variable
to observed and what can we learned from the mode!.

Three problems remain to be solved for future studies of economic chaos.

- The man obsacle in empiricd anadyss aises from limited data sources in
economics. In order to facilitate the testing of deterministic chaos and to improve our
undergtanding of modern economies, it is worthwhile to develop numerica dgorithms
that work with moderate data sets, as wel as to expand the data base of economic
datistics.

- The second question is how o determine the reference system. In our numerical

experiment, the starting and ending periods of the observations were arbitrarily dictated
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by the available data We do not know if the natura rate of growth is a constant or
changing over time. Perhgps this problem can be solved by future testing on longer
period combined with the effort of a higorian heping to identify turning points of
economic history. It is advantageous for nonlinear dynamics to introduce a time arrow or
ahigtorica perspectivein analyzing complex systems [Prigogine 1980].

- The third issue is how to estimate parameters from empirical data. We should point
out that the solutions of a nonlinear delay-differentia equation may not be gpproximated
by one- or two-dimensiond discrete modds in fitting the empiricd data. We should be
cautious in gpplying conventiona technique of econometrics to chaos models.

Exploring economic chaos opens a new way to understand human behavior and
socid evolution. The studies of nonequilibrium and ronlinear phenomena have not only
changed the techniques we use but dso the ways in which we think [Prigogine and
Stengers 1984].
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Figure captions

Fig. 1. Comparison of the time series of modd solutions. Their time units are arbitrary. ()
AR(2) linear stochastic modd. (b) Discrete logistic chaos generated by mapping
X(t+1) = 4X(1)[1-X(1)]. (c) Rosder modd of spird chaos with time interval dt =
0.05.

Fig. 2. Comparison of the phase portraits of model solutionsN=1000. (8) AR(2) moddl
with T=20. (b) Logistic chaos with T=1. (c) Rosder modd with T=1 and dt
=0.05.

Fig. 3. Comparison of the autocorrelations of the three modd solutions with 1000 data
points. The time units are same asin Figure 1.

Fig. 4. The exponentid growth trends in time series of monetary aggregates :Officid
ample-sum index SSM2 and Divisa index DDM2 (January 1969 - July 1984).
The time unit is one week.

Fig. 5. Comparison of the detrended weekly time series SSM2. (@) Symmetric LD
SSM2: thelog linear detrended SSM2 with anatura growth rate of 4 percent per
year. (b) Asymmetric FD SSM2 : the logarithmic first differences of SSM2.

Fig. 6. Comparison of the phase portraits of empirical time series. Time delay T=20. (a)
LD SSM2 time series. Time unit is one week. N=807 points. (b) IBM daily
common stock returns. The timeinterval is one day. N=1000 points, beginning on
duly 2, 1962.

Fig. 7. Comparison of autocorreation functions; AC(I) plotted against I. There are three
time series LD SSM2, LD DDM2 and IBM daily stock returns, each in their
origind time units. N=807.

Fig. 8. Anatidt's sketch of the Wolf dgorithm. The lower line, y(t), isthe reference orhit.
The upper broken line, z(t), sarting in the neighborhood of y(ty), is traced to

caculate the divergence of thelines. The points Zy(t,), z(ty), . . ., are replaced by
new nearest neighboring points z(t;), z(ty) after an evolution time EVOLV for

numerica caculation.
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Hg. 9. The maximum Lyapunov exponents of log linear detrended monetary aggregates
LD SSM2 and LD DDM2. The maximum Lyapunov exponents of monetary
aggregates plotted againgt the evolution time EVOLYV, caculated in phase space
with time dday T=5 weeks and embedding dimenson m=5. The unit is bit per
week. The evolution time EVOLV in caculaing numerica Lyapunov exponent
varies from 15 to 180 weeks at 15-week intervals.

Fig. 10. The Grassberger-Procaccia plots for cdculating corrdaion dimension of LD
SSM2 time series with time delay T=5. The embedding dimenson m=2, . . ., 6,
Is taken as a parameter. (a) Plots of In, C(R) versus Iy R, The plots rotate
downwards and to theright as m increases. (b) Plot of the dopes of the curvesin
(@) againd the Iny, R. The linear region of the curvesin (a) can be identified from
the plateau region in (b). The correlation dimension is equd to the saturated dope
1.5for LD SSM2 measured from the plateau region with m=5.

Fig.11. (@ and (b) The Grassberger-Procaccia plots for caculating corrdation
dimenson of LD DDM2. Its corrdlation dimenson is 1.3

Fig. 12. The flow diagram for a delayed feedback system of economic growth.

Fig. 13. The time sequences of the numerica solutions of Eq.13. The parameters were
fixed at @=0.1 and t =1 while changing the parameter b. (a) Period-1 solution P1
(limit cycle) with b=5.7. Its cycle number is C1. (b) Period-2 solution P2 (C2)
with b=5.8. (¢) Chaotic solution CH with b=6.0. (d) Period-3 solution P3 (C3)
with b=6.3.

FHg 14. (a)-(d) The phase portraits X(t+T) versus X(t) of the solutions of EQ.13.
Parameters are the same as the ones in Figure 13. Here, time interval dt =0.05
and time delay T=1. A typicd strange attractor can be seenin (c).

Fig. 15. (a)-(d) The power gectra of the solutions of Eq.13. The number of sampling
points is 4096. Only the lower quarter of the spectrum is displayed. The
parameters are same as in Figure 13. The highest pesk in dl plots is the
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fundamenta frequency f;. The second highest pesk is the subharmonic frequency
f5, which can be seenin (b) and (d). A typical chaotic spectrum is shown in (C).

Fig. 16. The phase diagram of numerical solutions of Eq.16 in parameter space at and bt .
The dashed area in (@) is enlarged in (b). Here, EP, ST, and CP represent
explosve regime, seady date (after damped oscillation), and complex regime,
respectively. CH is chaotic regime. C1, C2, and C3 are periodic patterns, whose
longer wave conssts of one, two, or three shorter waves in turn.

Fig. 17. The time path of medium-term growth cycles smulating LD SSM2 time seriesin

Figure 5a by means of Eqg.12. Its long-term picture is the same as that in Figure
13c with achanged time scae.
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