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Abstract 

Empirical and theoretical investigations of chaotic phenomena in 
macroeconomic systems are presented. Basic issues and techniques in testing 
economic aggregate movements are discussed. Evidence of low dimensional 
strange attractors is found in several empirical monetary aggregates. A 
continuous time deterministic model with delayed feedback is proposed to 
describe the monetary growth. Phase transition from periodic to chaotic motion 
occurs in the model. The model offers an explanation of the multiperiodicity and 
irregularity in business cycles and of the low-dimensionality of chaotic monetary 
attractors. Implications in monetary control policy and a new approach to 
forecasting business cycles are suggested. 
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In recent years, there has been rapid progress in the studies of  deterministic chaos, 

random behavior generated by deterministic systems with low dimensionality. This 

progress has been made not only in theoretical modelling, but also in experimental testing 

[Abraham , Gollub, and Swinney 1984].  Chaotic models have been applied to a variety 

of dynamic phenomena in the areas of fluid dynamics, optics, chemistry, climate and 

neurobiology. Applications to economic theory have also been developed, especially in 

business cycle theory [see review article:  Grandmont and Malgrange 1986]. 

Over the last century, the nature of business cycles has been one of the most 

important issues in economic theory [Zarnowitz 1985]. Business cycles have several 

puzzling features. They have elements of a continuing wave-like movement; they are 

partially erratic and at the same time serially correlated. More than one periodicity has 

been identified in business cycles in addition to long growth trends. Most simplified 

models in macroeconomics address one of these features [Rau 1974] , while system 

dynamics models describe economic movements in terms of a large number of variables 

[Forrester 1977].  

Two basic questions arise in studies of business cycles. Are endogenous mechanism 

or exogenous stochastics the main cause of economic fluctuations? And can complex 

phenomena be characterized by mathematical models as simple as, say, those for 

planetary motion and electricity?   

The early deterministic approach to business cycles with well-defined periodicity 

mainly discussed the endogenous mechanism of economic movements. A linear 

deterministic model was first proposed by Samuelson [1939], which generated damped 

or explosive cycles. Nonlinearities were introduced in terms of limit cycles to explain the 

self-sustained wavelike movement in economics [Goodwin 1951].    

A stochastic approach seems to be convenient for describing the fluctuating behavior 

in economic systems [Osborne 1959; Lucas 1981]. The problem with the stochastic 

models, however, lies in the fact that random noise with finite delay terms (usually less 

than ten lags, in practice) only explains the short term fluctuating behavior. Most 

aggregate economic data are serially correlated not only in the short term but also over 
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long periods. Two methods dealing with long correlations are often used: longer lags in 

regression studies and multiple differencing time series in ARIMA models. Longer lags 

require estimating more "free parameters", while ARIMA models are essentially 

whitening processes that wipe out useful information about deterministic mechanism.  

Actually, fluctuations may be caused by both intrinsic mechanism and external 

shocks. An alternative to the stochastic approach with a large number of variables and 

parameters,  is deterministic chaos, with few variables or low-dimensional strange 

attractors [Schuster 1984]. This is the approach adopted in the present article. Newly 

developed numerical techniques of nonlinear dynamics also shed light on a reasonable 

choice of the number of variables needed in characterizing a complex system. 

An increasing number of works examine economic chaos. Most theoretical models 

are based on discrete time [Benhabib 1980; Stutzer 1980; Day 1982; Grandmont 1985; 

Deneckere and Pelikan 1986; Samuelson 1986], only one long wave model is based on 

continuous time [Rasmussen et al 1985]. On-going empirical studies are conducted by a 

few economists [Sayers 1986; Brock 1986; Scheinkman and Le Baron 1987; Ramsey 

and Yuan 1987; Frank and Stengos 1987]. Some clues of nonlinearities have been 

reported, but no solid evidence of chaos has yet been found by these authors. Two 

efforts were made to fit nonlinear discrete models with empirical data [Dana and 

Malgrange 1984; Candela and Gardini 1986], but the parameters were found outside the 

chaotic regions.  

We started search for empirical evidence of chaos in economic time series in 1984. 

The main features of deterministic chaos, such as complex patterns of phase portraits and 

positive Lyapunov exponents, have been found in many economic aggregate data such as 

GNP and IPP, but most of our studies have failed to identify the dimensionality of 

attractors because of limited data. Then we tested monetary aggregates at the suggestion 

of  W. A. Barnett. Low-dimensional strange attractors from weekly data were found in 

1985, and a theoretical model of low-dimensional monetary attractors was developed in 

1986 [Chen 1987]. A brief description of comprehensive studies of economic chaos is 

presented here for general readers.  
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In this article, a short comparison between stochastic and deterministic models is 

introduced. Positive evidence of low-dimensional strange attractors found in monetary 

aggregates is shown by a variety of techniques. A continuous-time model is suggested to 

describe the delayed feedback system in monetary growth. The period-doubling route to 

chaos occurs in the model [Feigenbaum 1978]. The model offers an explanation for the 

low dimensionality of chaotic monetary time series and for the nature of business cycles 

and long waves. Finally, the implications of deterministic chaos in economics and 

econometrics are discussed.  

 

 

Simple pictures of deterministic and stochastic processes 

To what extent economic fluctuations around trends should be attributed to 

endogenous mechanism (described by deterministic chaos) or exogenous shocks 

(described by stochastic noise) is a question that can be addressed by empirical tests.  

There are at least four possible candidates in describing fluctuating time series: linear 

stochastic process, discrete deterministic chaos, continuous deterministic chaos, and 

nonlinear deterministic chaos plus noise. The test of the last one is only in its infancy, 

because a high level of noise will easily destroy the subtle signal of deterministic chaos. 

We mainly discuss the first three candidates here and give numerical examples of white 

noise and deterministic chaos as the background for further discussions. The linear 

autoregressive AR(2) model adopted in explaining the fluctuations of log linear detrended 

GNP time series [Brock 1986] is demonstrated as an example of a linear stochastic 

process. For deterministic chaos, two models are chosen: the discrete logistic model 

[May 1976], which is widely used in population studies and economics, and the 

continuous spiral chaos model [Rossler  1976].  

The time sequences of these models are shown in Figure 1. They seem to be equally 

capable to describe economic fluctuations when appropriate scales are used to match 

real time series. But closer examination reveals the differences among them. 
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Phase  space  and  phase  portrait 

 From a given time series X(t), an m-dimensional vector V(m,T) in phase space can 

be constructed by the m-history with time delay T: V(m,T) = {X(t), X(t+T), . . , X[t+(m-

1)T] }, where m is the embedding dimension of phase space [Takens 1981]. This is a 

powerful tool in developing numerical algorithms of nonlinear dynamics, since it is much 

easier to observe only one variable to analyze a complex system. 

The phase portrait in two-dimensional phase space X(t+T) versus X(t) gives clear 

picture of the underlying dynamics of a time series. With the fixed point solution (the so-

called zero-dimensional attractor), the dynamical system is represented by only one point 

in the phase portrait. For periodic solution (the one-dimensional attractor), its portrait is a 
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closed loop. Figure 2 displays the phase portrait of the three models. The nearly uniform 

cloud of points in Figure 2a closely resembles the phase portrait of random noise (with 

infinite degree of freedom). The curved image in Figure 2b is characteristic of the one-

dimensional unimodal discrete chaos. The spiral pattern in Figure 2c is typical of a 

strange attractor whose dimensionality is not an integer. Its wandering orbit differs from 

periodic cycles. 

 

 

 

 

Long-term  autocorrelations 

The autocorrelation function is another useful concept in analyzing time series. The 

autocorrelation function AC(I) is defined by 
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AC(I) = AC(t'-t) = cov [ X(t'), X(t) ] / E [ (X(t) - M)2] (1) 

 

Where M is the mean of X(t) and cov[ X(t'), X(t) ] is the covariance between X(t') and 

X(t). They are given by 

 

     N 

M = E[ X(t) ] = { Σ  X(t) } / N (2) 

    t=1 

 

cov ( X(t'), X(t) ) = E [ (X(t') - M) ( X(t) - M) ] (3) 

 

It is known that the autocorrelation function of the periodic motion is periodic and 

that of the white noise is a delta function. Figure 3 shows autocorrelations of the AR(2) 

process  quickly decay to small disturbances. The autocorrelations of the logistic chaos 

look the same as those of white noise. The Rossler attractor displays some resemblance 

to periodic cycles. Its autocorrelations have initial exponential decay after a characteristic 

decorrelation time Td, followed by wave-like fat tails.  Td is determined by the first 

vanishing autocorrelations.  

 

Testing economic chaos in monetary aggregates 

Testing economic aggregate time series is a complex process, since they contain 

growth trends. Not all the techniques in nonlinear dynamics developed by mathematicians 
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and physicists [Mayer-Kress 1986] are applicable to economic time series.  For 

example, Poincare sections and spectral analysis used in physics require more than 

several thousand data points. Data quantity and data quality are crucial in applying the 

currently existing techniques.  

After introducing the monetary indexes, we focus on the testing and modelling of 

monetary aggregates. The data source is Fayyad [Fayyad 1986]. 

 

Monetary   aggregates  

Observable indicators are essential to empirical investigations. In simple physical 

systems, some macroscopic quantities (such as mass and energy) can be simple 

summation of microscopic quantities. The right choice of aggregate indexes for economic 

system remains an issue on which there is no consensus. For example, there are 27 

component monetary assets - currency, traveler checks, demand deposit, Eurodollars, 

money market deposit, saving deposit, Treasury securities, commercial paper, and so on - 

according to the Federal Reserve's latest classification of the American monetary system. 

Four levels of simple-sum aggregate indexes, M1, M2, M3 and L, consisting of 6 to 27 

monetary assets, are used by the Federal Reserve. There are also parallel theoretical 

indexes, such as Divisia monetary aggregates, initiated by W. A. Barnett. Better aggregate 

indexes are needed to describe macroeconomic movements by simple mathematical 

methods. 

We tested 12 types of monetary index time series including official simple-sum 

monetary aggregates (denoted by SSM), Divisia monetary demand aggregates (DDM), 

and Divisia monetary supply aggregates (DSM); each yielded about 800 weekly data 

points between 1969 and 1984.  Five of them were successful in testing strangeness: 

simple-sum SSM2, Divisia demand DDM2, DDM3, DDL and Divisia supply DSM2 

monetary aggregates. The behaviors of Divisia aggregates are very similar. We only 

discuss SSM2 and DDM2 here for brevity.  The exponential growth trends of these time 

series are shown in Figure 4.  
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Observation  reference  and  first-difference  detrending 

Mathematical models with attractor solutions can greatly simplify descriptions of 

complex movements without obvious growth trends. The choice of detrending methods 

basically is a choice of reference system or transformation theory. Detrending is a solved 

problem for physicists when observations of physical systems are conducted in 

appropriate inertial reference systems. However, it is an unsolved issue in testing 

economic time series. How to choose a reference system to observe the global features 

of economic movements is a critical question for identifying the deterministic mechanisms 

of economic activities. We attempt to answer this question through numerical 

experiments on empirical data. 

The percentage rate of change and its equivalent form, the logarithmic first 

differences, are widely used in fitting stochastic econometric models [Osborne 1959; 

Friedman 1969]. It can be defined as follows: 

 

Z(t) = ln S(t+1) - ln S(t) = ln { S(t+1) / S(t) } (4) 

 

where S(t) is the original time series, and Z(t) is the logarithmatic first difference. Its 

ineffectiveness for observing chaos will be shown later. 

 

Log  linear  detrending  and  growth  cycles 
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We detrended data using log linear detrending which was suggested by W. A. 

Barnett. The same detrending was also been used by other economists [Dana & 

Malgrange 1984; Brock 1986]. In log linear detrending, we have 

 

 X(t) = ln S(t) - ( k0 +k1 t ) (5) 

or 

 S(t) = S0 exp ( k1 t)  exp ( X(t) ) (6) 

 

where S(t) is the original time series, and X(t) is the resulting log linear detrended time 

series, k0 is the intersection, k1 the constant growth rate, and S0 = exp( k0 ). 

After numerical experiments on a variety of detrending methods and economic time 

series, we finally found that the percentage rate of change and its equivalent methods are 

whitening processes based on short time scaling.  Log linear detrending, on the other 

hand, retains the long term correlations in economic fluctuations, since its time scale 

represents the whole period of the available time series. Findings of evidence of 

deterministic chaos mainly from log linear detrended economic aggregates lead to this 

conclusion. Figure 5a shows the time sequences of the log linear detrended (denoted by 

LD) monetary aggregates SSM2. Its almost symmetric pattern of nearly equal length of 

expansion and contraction is a typical feature of growth cycles in economic systems. The 

usual business cycles are not symmetrical, their longer expansions and shorter 

contractions can be obtained by superimposing a trend with constant growth rate adding 

to the symmetric growth cycles. The logarithmic first - difference time series (denoted by 

FD) SSM2 is given in Figure 5b as a comparison. The latter is asymmetric and more 

erratic.  
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Empirical  evidence  of  deterministic  and  stochastic  processes 

Based on the phase portrait and autocorrelation analysis, we can easily distinguish 

qualitatively a stochastic process from a deterministic one. A comparison between IBM 

daily stock returns and monetary aggregates follows. 

Figure 6a presents the phase portrait of detrended monetary aggregates LD SSM2. 

It rotates clockwise like the spiral chaos in Fig. 2c. The complex pattern is a potential 

indication of nonlinear deterministic movements and eliminates the possibilities of white 

noise or simple periodic motions. The phase portrait of IBM daily stock returns is shown 

in Figure 6b. It  closely resembles Gaussian white noise. It is consistent with previous 

findings in economics [Osborne 1959; Fama 1970].  The autocorrelations of the 

detrended time series are shown in Figure 7.  Readers may compare these with the 

autocorrelations in Figure 3. 

If we approximate the fundamental period T1 by four times the decorrelation time Td, 

as in the case of periodic motion, then, T1 is about 4.7 years for LD SSM2, which is 

very close to the common experience of business cycles. We will return to this point 

later. 
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The  numerical  maximum  Lyapunov  exponent 

Chaotic motion is sensitive to initial conditions. Its measure is the Lyapunov 

exponents, which are the average exponential rates of divergence or convergence of 
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nearby orbits in phase space. Consider a very small ball with radius ∈(0) at time t = 0 in 

the phase space. The ball may distort into an ellipsoid as the dynamical system evolves. 

Let the length of the i-th principal axis of this ellipsoid at time t be ∈i(t). The spectrum of 

Lyapunov exponents λi from an initial point can be obtained theoretically by [Farmer  

1982] 

 

 

λi =   lim      lim       { ln [ ∈i(t) / ∈i(0)] / t } (7) 

 t→� ∈(0)→0 

 

The maximum Lyapunov exponent λ (the largest among λi) can be calculated 

numerically by the Wolf algorithm [Wolf et al. 1985] where the limiting procedure is 

approximated by an averaging process over the evolution time EVOLV. This algorithm is 

applicable when the noise level is small. A sketch of the algorithm is shown in Figure 8. 

The maximum Lyapunov exponent λ is negative for stable systems with fixed points, zero 

for periodic or quasiperiodic motion, and positive for chaos. 

 

 

 

In theory, the maximum Lyapunov exponent is independent of the choice of evolution 

time EVOLV, embedding dimension m and time delay T. In practice, the value of 

Lyapunov exponent does relate to the numerical parameters. The range of evolution time 
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EVOLV must be chosen by numerical experiments. The positive maximum Lyapunov 

exponents of the investigated monetary aggregates are stable over some region in 

evolution time shown in Figure 9. The numerical Lyapunov exponent is less sensitive to 

the choice of embedding dimension m. In our tests, we fixed  m at 5 and time delay T at 

5 weeks  based on the numerical experiments. For example, the stable region of 

EVOLV is 45-105 weeks for SSM2 and 45-150 weeks for DDM2. Their average 

maximum Lyapunov exponent λ over this region are 0.0135 and 0.0184 (bit per week),  

respectively. 

 

 

The characteristic decorrelation time Td of the LD SSM2 is 61 weeks.  The 

reciprocal of the maximum Lyapunov exponent  λ-1 (= 74.1) for LD SSM2 is roughly of 

the same order of magnitude as the decorrelation time Td [Nicolis and Nicolis 1986].   

This relation does not hold for pure white noise. 

 

The  correlation   dimension 

The most important characteristic of chaos is its fractal dimension [Mandelbrot 

1977]  which provides a lower bound to the degrees of freedom for the system 

[Grassberger and Procaccia 1983, 1984]. The popular Grassberger-Procaccia algorithm 

estimates the fractal dimension by means of the correlation dimension D. The correlation 

integral Cm(R) is the number of pairs of points in m-dimensional phase space whose 
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distances between each other are less than R.  For random or chaotic motion, the 

correlation integral Cm(R) may distribute uniformly in some region of the phase space 

and has a scaling relation of RD. Therefore, we have 

 

ln2 Cm(R) = D  ln2 R + constant (8) 

 

For white noise, D is an integer equal to the embedding dimension m. For 

deterministic chaos, D is less than or equal to the fractal dimension. The Grassberger-

Procaccia plots of lnCm(R)  versus  lnR and slope versus log R for LD SSM2 and LD 

DDM2 are shown in Figures 10 and 11. For R too large, Cm(R) becomes too saturate 

at the total number of data points (see the right-hand regions of Figures 10 and 11). For 

R too small, the algorithm detects the noise level of the data (see the left-hand regions of 

Figures 10 and 11). The existence of linear regions of intermediate R, which reflect the 

fractal structure of the attractors, is shown  in Figures 10a and 11a. The correlation 

dimension can be determined from the the saturated slope of the plateau region in Figures 

10b and 11b.  
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We found that the correlation dimensions of the investigated five monetary 

aggregates, including four Divisia monetary indexes and one official simple-sum monetary 
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index, were between 1.3 and 1.5. For other monetary aggregates, no correlation 

dimension could be determined. These findings are consistent with previous studies in 

economic aggregation theory and index number theory, which indicate that, except for 

SSM2, Divisia monetary aggregates are better indexes than simple-sum monetary 

aggregates  [Barnett, Hinich, and Weber 1986; Barnett and Chen, 1988].  

 

Some  remarks  about  numerical  algorithms 

Given a deterministic attractor whose correlation dimension is D, we first ask how 

many data points are needed to determine the dimensionality D [Greenside et al. 1982]. 

The minimum data points ND with a D-dimensional attractor can be estimated by scaling 

relation hD, where the constant h varies with attractors. Practically, we can only identify 

low-dimensional attractors with finite data sets, since ND increases exponentially with D. 

For the Mackey-Glass model [1977], 500 points are needed for D=2 and more than 

10,000 points for D=3. In the Couette-Taylor experiment, ND is about 800 points for 

D=2.4, 40,000 points for D=3, and 50 billion points for D=7 [Brandstater and Swinney 

1987]. This issue seems to be ignored by some economists. For example, in Brock 

[1986], the correlation dimension of GNP with 143 quarterly data points was calculated 

under the extremely high embedding dimension (m=20) without showing the linear region 

of the Grassberger-Procaccia plots. In our experience, the width of the linear region 

shrinks rapidly to zero when m increases beyond 6,  as seen in Figure 10 and 11. 

Practically, m is  large enough when m reaches 2D+1.  

There is another concern about the time expansion covered by the time series. In 

physics experiments, the sampling rate is typically 10-100 points per orbit. Therefore, 

100-1000 periods are needed for D=3 and 5-50 periods for D=2. We tested this 

estimation in terms of the Mackey-Glass attractor. When the time delay †t is 17, its 

correlation dimension D is 1.95 calculated with 25,000 points [Grassberger and 

Procaccia 1983]. To compared this result, we estimated the correlation dimension under 

a variety of sampling rates and time periods. We find the error is within 1 percent with 
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100 periods, 3 percent with 30 periods, 8 percent with 10 periods, and 18 percent with 

5 periods when using 1000-3000 data points. Similar results are obtained for the model 

we develop later.  

It should be noted that there is no unique approach to identify deterministic chaos 

with certainty. Several algorithms that may be complementary were used in our tests. At 

present, with only hundreds of data points, the discovery of economic strange attractors 

whose dimensionality is higher than 3 is unlikely.  

We can only speculate why we were unable to identify correlation dimensions for 

other types of economic time series, such as GNP, IPP, and the Dow-Jones indexes, in 

our numerical tests. Either their dimensions are too high to be estimated for limited data, 

or their noise levels are too large to recover the subtle information of deterministic chaos.  

 

 

A delayed feedback model of economic growth  

Let us consider modelling the low-dimensional monetary strange attractors as growth 

cycles. There are several problems to be solved: time scale, dynamic mechanism, and 

system stability. 

 

Continuous   versus   discrete  time  

 Current economic studies are dominated by discrete models. Economists favor 

discrete models because economic data are often reported discretely in years, quarters 

or months, and because discrete models are easier for numerical regression. However, 

continuous-time models are needed when the serial correlation of disturbances can no 

longer be neglected [Koopmans 1950]. The decorrelation time Td of the 

autocorrelations of time series sets a lower bound to the time unit of the discrete model.  

For a typical discrete model, Td is in approximately the same length as the discrete time 

unit. The decorrelation time Td for monetary attractors is more than 60 weeks. The time 

scales of discrete models of deterministic chaos with one or two variables in business 
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cycle theory [Benhabib 1980; Day 1982; Grandmont 1985] are usually larger than the 

time scale of real business cycles [Sims 1986; Sargent 1987]. Clearly, the simple 

discrete model is not appropriate to describe monetary growth cycles. A continuous 

model is needed for the monetary time series. 

The observed low correlation dimension of monetary aggregates sets additional 

constraints to the theoretical modelling of growth cycles.  The minimum number of 

degrees of freedom required for chaotic behavior in autonomous differential equations is 

3 [Ott 1981], so the fractal dimension will be larger than 2. Therefore, the driven 

oscillator in the long-wave model [Rasmussen, Mosekilde, and Sterman 1985] is not 

applicable in our case. 

After comparing the correlation dimension and the phase portraits of existing models, 

we believe that the differential-delay equation is a good candidate for modelling monetary 

growth. For simplicity, we consider only one variable here. The low dimensionality of 

monetary attractors leads to the belief of the separability of the monetary deviations from 

other macroeconomic movements that are integrated in the natural trends of monetary 

growth rate.  

 

Deviations  from  the  trend  and  feedback  behavior 

The apparent monetary strange attractors are mainly found in log linear detrended 

data. This is an important finding to study control behavior in monetary policy. We 

believe that the human ability to manage information is limited even if decision makers 

have "perfect information". Economic behavior is more likely following some simple rule 

or procedure  than providing global optima [Simon 1979]. We assume that the general 

trends of economic development, the natural growth rate, are perceived by people in 

economic activities as a common psychological reference or as the anchor in observing 

and reacting [Tversky and Kahneman 1974]. Administrative activities are basically 

reactions to deviations from the trend.  We choose the deviation from the natural growth 

rate as the main variable in the dynamic model of monetary growth.   
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There are a number of differential-delay models in theoretical biology and population 

dynamics [Mackey and Glass 1977; May 1980; Blythe, Nishbet, and Gurney 1982; 

Chow and Green 1985]. Our model has a new feature which differs from previous 

models of population dynamics: its wave pattern should be symmetric, because we are 

dealing with detrended growth cycles. The wave form of business cycles is not 

symmetric, since they are observed in terms of the first difference of logarithmatic 

macroeconomic indexes or annual percent rate of growth. In an economic system moving 

with a constant growth rate, we define the reference equilibrium state as zero. The 

proposed equation is: 

 

dX(t)/dt = a X(t)  +  F( X(t-τ) )  (9) 

F(X) = X G(X) (10) 

 

X is here the relative growth index, which measures the deviation from the trend. τ is the 

time delay, a is the expansion speed, F is the control function,  and G is the feedback 

function. 

There are two competing mechanisms in the growth system. The first is the 

stimulative growth that is an instantaneous response to market demand. It is described by 

the first term on the right of Eq. 9. A linear term for exponential growth is used for 

mathematical convenience. The second term represents the endogenous system control 

described by the control function F. This consists of feedback signal X(t-τ) and 

feedback function G. The time delay τ exists in the feedback loop because of  

information and regulation lags.  

 

The  flow  diagram  and  the  symmetric  control  function 

Figure 12 shows a flow diagram to describe our model. There are several 

considerations in specifying F and G. We assume the control function F(X) has two 

extrema at ±Xm for the control target floor and ceiling [Solomon 1981]. G(X) should be 

nonlinear and symmetric, G(-X) = G(X), in order to describe the overshooting in 
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economic management and the symmetry in growth cycles. These features are essential 

to generate complex behavior in the economic growth model.  

 

 

 

 

In choosing the form of G, we do not use the polynomial function adopted in 

previous models with relaxation oscillations. Here, we suggest a simple exponential 

function to describe negative feedback reactions. 

 

G( X ) = - b exp( - X2 / σ2 ) (11) 

 

where b is the control parameter, σ is the scaling parameter, and the extrema of F(X) are 

located at Xm = ± σ / �2. Substituting Eqs. 10 and 11 into Eq.9 gives the following 

differential-delay equation: 

 

dX(t)/dt = a X(t) - b X(t-τ)  exp( -X(t-τ)2 / σ2 )   (12) 

 

We may change the scale by X=X'σ and t=t'τ, then drop the prime for convenience: 

 

dX(t)/dt = aτ X(t) - bτ X(t-1) exp( -X(t-1)2 ) (13) 
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The rough behavior of the time delay Eq.13  can be discussed in terms of linear 

stability analysis in determining the boundaries of damped and divergent oscillations in the 

parameter space. 

 

The  period-doubling  route  to  chaos 

We solved Eq.13 numerically by the predictor-corrector approach. Time sequences 

and phase portraits of solutions with different b for fixed a and τ are shown in Figures 13 

and 14. In order to identify the route to chaos, the power spectra are shown in Figure 

15. The period-doubling route to chaos is observed when parameter changes induce 

bifurcations [Feigenbaum 1978]. One observes the fundamental frequency f1 and its 

subharmonic frequency f2 before and after transition to chaos in Figure 15c). In addition 

to period-1 orbit P1 (limit cycle)  in Figure 14a, period-2 orbit P2 in Figure 14b and 

period-3 orbit P3 in  Figure 14d, we also observe P4, P8 and P6 in the regions close to 

P2 and P3, respectively. The period-doubling route to chaos has also been found in 

other differential-delay models with asymmetric solutions [May 1980]. 
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Phase  transition  and  the  pattern  stability 

A more useful approach is to study the waveform of business cycles, since spectral 

analysis is difficult to apply with the few cycles of data available in economic time series.  

 The observed periodic repetition often consists of basic patterns with several shorter 

cycles. We define the number of shorter cycles in a basic wave pattern as the cycle 

number Ck. The basic pattern may have L large amplitude oscillations followed by S 

small amplitude oscillations. Each periodic state can be labeled the cycle number, 

Ck=L+S. For example, the periodic states in Figures 14a, 14b and 14d can be labeled 

C1, C2, and C3, respectively.  
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We should point out that the cycle number Ck is not necessarily equal to the period 

number P. For example, the wave form of P6 is C3, and those of P4 and P8 are belong 

to C2.  

The phase diagram in terms of cycle number of the solutions is useful in characterizing 

economic long waves. Figures 16a and 16b display qualitatively the phase diagram of 

equation Eq. 13 in the parameter space. The broad diversity of dynamical behavior 

includes steady state ST, limit cycle or periodic motion C1, and explosive solution EP.  

The complex regime CP includes alternate periodic state ( C1, C2, C3 ) and chaotic 

regime CH.  
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When parameter values change within each region, the dynamic behavior is pattern-

stable, because the dynamic mode occupies a finite area in the parameter space. The 

phase transition occurs when parameters cross the boundary between different phases. It 

is observable when the wave pattern changes.  

The notation of cycle number Ck is introduced for possible application in analyzing 

long waves. An interesting feature of the model is that only three periodic patterns C1, 

C2 and C3 have been found. The model gives an simple explanation of multiperiodicity in 

business cycles.  

It is speculated that no unique periodicity is involved in the business cycles. In 

addition to seasonal changes, several types of business cycles have been identified by 

economists [Van Duijn 1983]. The Kitchin cycles usually last 3-5 years; the Juglar 

cycles, 7-11 years; the Kuznets cycles, 15-25 years; and Kondratieff cycles, 45-60 

years. Schumpeter suggested that these cycles were linked. Each longer wave may 

consists of two or three shorter cycles. This picture can be described by the periodic 

phase C2 or C3 in the CP regime of our model. The irregularity in long waves can also 

be explained by the chaotic regime CH. Our model gives a variety of possibilities of 

periodicity, multiperiodicity and irregularity in economic history, although our data only 

show the chaotic pattern in monetary movements. 

It is widely assumed that the long waves are caused by long lags, a belief coming 

from the linear paradigm [Rostow 1980].  This condition is not necessary in our model, 

because the dynamic behavior of Eq.13 depends both on aτ and bτ. A strong 

overshooting plus a short time delay has the same effect as a weak control plus a long 

time delay, a similar point also made by Sterman [Sterman 1985]. 

This model is so simple and general, it could have applications beyond the monetary 

system in the market economy we discussed here. For example, the growth cycles and 

long waves caused by overshooting and time delay may also happen in centrally planned 

economies. 

 

Simulating  empirical  cycles  and  forecasting  basic  trends 
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In comparing model-generated patterns with empirical data, we may confine our 

experiments to certain regions of the parameter space. For example, we can estimate the 

average period T from 4 times the decorrelation time Td. The time delay τ in monetary 

control due to regulation lag and information lag is between 20 and 56 weeks  [Gordon 

1978]. If we estimate the time delay τ to be 39 weeks,  we can simulate LD SSM2 time 

series by the solution shown in Figure 13c, by setting τ=39, a=0.00256, b=0.154, and 

σ=0.0125. The model results match well the average amplitude Am, decorrelation time 

Td, positive maximum Lyapunov exponent λ, and correlation dimension D of the 

empirical time series. 

 

 

The medium-term picture of simulated LD SSM2 in Figure 17 has well-behaved 

peaks and troughs with a stable period. We can hardly imagine that its long-term 

behavior is chaotic (see Figure 13c ).  

We tested the theoretical models with power spectra and autocorrelation analysis. 

The approximated period T of the chaotic solution can be estimated from Td measured 

by 3-5 cycles. It is close to the fundamental period T1 (=f1-1) determined by power 

spectra measured by  100 cycles with an error within 3 percent. For LD SSM2 time 

series, the difference of Td measured between 10-15 years is less than 5 percent. We 

can obtain valuable information about the fundamental period T1 without knowing the 

exact parameters of the deterministic model.   

 

Implications  for  forecasting  and  control  policy 
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We should point out that the word chaos  is misleading. Chaotic motion has both 

regular and irregular characteristics. We prefer to refer to continuous deterministic chaos 

as imperfect periodic motion , which has a stable fundamental period but an irregular 

wave shape and a changing amplitude. Actually, we may often recover more information 

from chaotic motion than from random movements. For example, econometric models 

based on linear stochastic processes mainly explain the variance of the residuals. They 

offer little information about the trend and periods of business cycles beyond the short 

term. We suggest a new forecasting approach based on detecting strangeness of growth 

cycles. Although the long term prediction of the chaotic orbit is impossible from the view 

of nonlinear dynamics, a medium-term prediction of approximate period T can be made 

if we can identify strange attractors from the time series.  

Let us discuss the meaning of the control parameters in Eq.12. When b=0, the 

monetary deviation from the natural rate will grow at a speed eat. We define a 

characteristic doubling time ta which measures the time needed to double the 

autonomous monetary expansion X(t) without control. Similarly, we can define a 

characteristic half time tb, which measures the time needed to reduce the money supply 

to half its level when a=0 and X(t-τ) reaches the control target Xm= σ/�2=1.4 percent 

per year. The same is true for the contraction movements, since the feedback function 

G(x) is symmetric. Here ta = 5.2 year and  tb=7.4 week for SSM2 in our simulation. We 

see that even modest time delay and overshooting may generate cycles and chaos.  

For policy considerations, we suggest that the fluctuations in money supply can be 

moderated by reducing the time delay †t or control parameter b. We can set 7.3 < τ < 

29.3 weeks while fixing a and b; or let 29.5 < tb < 108.7 weeks (when 1.51 > b > 

0.41). These figures give a qualitative picture of monetary target policy which seems 

reasonable for the real economy. 

 

 

Summary  and  discussion 
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Empirical evidence of low-dimensional strange attractors is found in log linear 

detrended monetary aggregate data for the United States. These results are very 

encouraging, since new information is revealed about macroeconomic movements. 

A differential-delay equation with only two parameters is suggested to describe 

monetary growth cycles. Self-generated periodic, multiperiodic, and chaotic behaviors 

are observed in the deterministic model. This model sheds light on the mechanism of 

business cycles and long waves : the nonlinearity and time delay in feedback control may 

cause complex behavior. Although our model is simple and exploratory, it has enabled us 

to simulate the wave pattern and low dimensionality of monetary growth cycles.  

We do not deny the complexity of social phenomena and the usefulness of 

disaggregated approaches in econometrics and system dynamics. Low-dimensional 

economic chaos is not only useful but also testable in economic studies. It can be 

understood through the experience of physicists. It is often convenient to introduce 

projection operators which decompose the system into one low-dimensional space, 

whose movements can be effectively simplified, and one orthogonal to it [Prigogine 

1980].  In practice, the right choice of the projection operator can only be made by 

empirical tests. Our work, together with previous efforts in study of complex systems, 

strongly supports the hope that social phenomena can be quantitatively described by 

simple mathematical models in some aspects. The key issues are which pertinent variable 

to observed and what can we learned from the model. 

Three problems remain to be solved for future studies of economic chaos.  

. The main obstacle in empirical analysis arises from limited data sources in 

economics. In order to facilitate the testing of deterministic chaos and to improve our 

understanding of modern economies, it is worthwhile to develop numerical algorithms 

that work with moderate data sets,  as well as to expand the data base of economic 

statistics.  

. The second question is how to determine the reference system. In our numerical 

experiment, the starting and ending periods of the observations were arbitrarily dictated 
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by the available data. We do not know if the natural rate of growth is a constant or 

changing over time. Perhaps this problem can be solved by future testing on longer 

period combined with  the effort of a historian helping to identify turning points of 

economic history. It is advantageous for nonlinear dynamics to introduce a time arrow or 

a historical perspective in analyzing complex systems [Prigogine 1980].  

. The third issue is how to estimate parameters from empirical data. We should point 

out that the solutions of a nonlinear delay-differential equation may not be approximated 

by one- or two-dimensional discrete models in fitting the empirical data. We should be 

cautious in applying conventional technique of econometrics to chaos models.  

Exploring economic chaos opens a new way to understand human behavior and 

social evolution. The studies of nonequilibrium and nonlinear phenomena have not only 

changed the techniques we use but also the ways in which we think [Prigogine and 

Stengers 1984].  

 

References 

Abraham, N. B., J. P. Gollub and H. L. Swinney. 1984. Testing Nonlinear Dynamics. 

Physica  11D: 252-264. 

Barnett, W. A., and Ping Chen. 1988. The Aggregation-Theoretic Monetary Aggregates are 

Chaotic and Have Strange Attractors: An Econometric Application of Mathematical 

Chaos, in Dynamic  Econometric  Modelling ,  W. A. Barnett, E. Berndt, and H. White 

eds., Cambridge, Mass.: Cambridge University Press. See also: Barnett, W. A. and Ping 

Chen. 1987.  Economic Theory as a Generator of Measurable Attractors, in Laws  of  

Nature  and  Human  Conduct,  I. Prigogine and M. Sanglier eds. Brussels: Task Force 

of Research, Information and Study on Science. 

Barnett, W. A., M. J. Hinich, and W. E. Weber. 1986. The regulatory Wedge between the 

Demand-side and Supply-side Aggregation Theoretic Monetary Aggregate. Journal of  

Econometrics   33:165-185. 



System Dynamics Review Evidence of Economic Chaos                                                                    

32 

Benhabib, J. 1980. Adaptive Monetary Policy and Rational Expectations.  Journal   of   

Economic  Theory    23: 261-266. 

Blythe, S. P., R. M. Nisbet, and W. S. C. Gurney. 1982. Instability and Complex Dynamic 

Behavior in Population Models with Long Time Delays.Theoretical  Population  

Biology  22: 147-176. 

Brandstater, A., and H. L. Swinney. 1987. Strange Attractors in Weakly Turbulent Couette-

Taylor Flow. Physical   Review   A   35: 2207-2220. 

Brock, W. A. 1986. Distinguishing Random and Deterministic Systems. Journal   of 

Economic Theory   40: 168-195. 

Candela, G. and A. Gardini. 1986. Estimation of a Non-Linear Discrete Time Macro 

 Model. Journal   of  Economic  Dynamics  and  Control   10 : 249-254. 

Chen, Ping. May 1987. Nonlinear  Dynamics  and  Business  Cycles. Ph.D.  Dissertation. 

University of Texas at Austin. 

Chow, S. N., and D. Green, Jr. 1985. Some Results on Singular Delay-Differential 

Equations. in   Chaos, Fractals,  and  Dynamics ,  P. Fischer and W. R. Smith eds. 

New York: Marcel Dekker. 

Dana, R. A., and P. Malgrange. 1984. The Dynamics of a Discrete Version of a Growth 

Cycle Model, in  Analyzing  the  Structure   of  Econometric  Models . J. P. Ancot  

ed., The Hague: Martinus Nijhoff Publishers. 

Day, R. H. 1982. Irregular Growth Cycles,  American  Economic  Review  72: 406-414. 

Deneckere, R., and S. Pelikan. 1986. Competitive Chaos.  Journal  of  Economic  Theory    

40: 13-25. 

Fama, E. F. 1970. Efficient Capital Markets: A Review of Theory and Empirical Work. 

Journal   of   Finance .   25: 383-417.  

Farmer, J. D. 1982. Chaotic Attractors of an Infinite-dimensional Dynamical System.  

 Physica  D    4: 366-393. 

Fayyad, S. 1986.  Monetary  Asset  Component  Grouping  and  Aggregation :  An  

Inquiry  into  the  Definition  of  Money.   Ph. D.  Dissertation. University of Texas at 

Austin. 



System Dynamics Review Evidence of Economic Chaos                                                                    

33 

Feigenbaum, M. J. 1978. Quantitative Universality for a Class of Nonlinear Transformations.   

Journal   of  Statistical  Physics.   19: 25-52. 

Forrester, J. W. 1977. Growth Cycles. De   Economist.   125: 525-543. 

Frank, M., and T. Stengers. 1987. Some Evidence Concerning Macroeconomic Chaos. 

mimeo. University of Guelph, Ontario. 

Friedman, M. 1969.  The  Optimum  Quantity  of  Money.  Chicago: Aldine. 

Goodwin, R. M. 1951. The Non-Linear Accelerator and the Persistence of Business 

Cycles,  Econometrica   19: 1-17. 

Gordon, R. J. 1978.  Macroeconomics.   pp. 468-471. Boston: Little, Brown & Co. 

Grandmont, J. M. 1985. On Endogenous Competitive Business Cycles, Econometrica   53: 

995-1045. 

Grandmont, J. M., and P. Malgrange. 1986. Nonlinear Economic Dynamics.   Journal  of  

Economic  Theory     40: 3-12. 

Grassberger, P., and I. Procaccia. 1983. Measuring the Strangeness of Strange Attractors.  

Physics  Review  Letters   50: 346-349. 

Grassberger, P. and I. Procaccia. 1984. Dimensions and Entropies of Strange Attractors 

From a Fluctuating Dynamic Approach, Physica   13D: 34-54. 

Greenside, H. S., A. Wolf, J. Swift, and T. Pignataro. 1982. Impracticality of a Box-

Counting Algorithm for Calculating the Dimensionality of Strange  Attractors. Physical  

Review  A.  25: 3453-3456. 

Koopmans, T. C. 1950. Models Involving a Continuous Time Variable, in   Statistical   

Inference  in  Dynamic  Economic  Models .  New York:  John Wiley & Sons. 

Lucas, R. E., Jr. 1981. Studies in Business-Cycle Theory.  Cambridge, Mass.: M.I.T. 

Press. 

Mackey, M. C., and L. Glass. 1977. Oscillation and Chaos in Physiological Systems.  

Science   197: 287-289. 

Mandelbrot, B. 1977. Fractals,  Forms,  Chances  and  Dimension.  San Francisco: 

Freeman. 



System Dynamics Review Evidence of Economic Chaos                                                                    

34 

May, R. M. 1980. Nonlinear Phenomena in Ecology and Epidemiology. 1980.  Annals  

New  York  Academy  of  Sciences,   357: 267-281. 

Mayer-Kress, G. 1986.  Dimensions  and  Entropies  in  Chaotic  Systems . Berlin: 

Springer-Verlag. 

Nicolis, C., and G. Nicolis. 1986. Reconstructing of the Dynamics of the Climatic System 

from Time Series Data. Proceedings  of  National  Academy  of  Sciences  USA  83: 

536-540. 

Osborne, M. F. M. 1959. Brownian Motion in the Stock Market, Operation  Research , 7: 

145-173. 

Ott, E. 1981. Strange Attractors and Chaotic Motions of Dynamical Systems.  Review   of  

Modern  Physics   53: 655-671. 

Prigogine, I. 1980.  From   Being  to  Becoming.   San Francisco: W. H. Freeman.  

Prigogine, I. and I. Stengers. 1984. Order  out  of  Chaos.  New York: Batnam. 

Rau, N. 1974.  Trade  Cycles : Theory  and  Evidence .  London: Macmillan. 

Ramsey, J. B., and H. J. Yuan. 1987. The Statistical Properties of Dimension Calculations 

Using Small Data Sets. mimeo. New York University. 

Rasmussen, S.,  E. Mosekilde and J. D. Sterman. 1985. Bifurcations and Chaotic Behavior 

in a Simple Model of the Economic Long Wave.   System  Dynamics  Review   1: 92-

110. 

Rössler, O. E.. 1976. An Equation for Continuous Chaos.   Physics   Letters  A   57: 397-

398. 

Rostow,W. W. 1980.   Why  the  Poor  Get  Richer  and  the  Richer  Slow  Down .   

Austin, Texas: University of Texas Press. 

Samuelson, P. A. 1939. Interactions between the Multiplier Analysis and the Principle of 

Acceleration.  Review  of   Economic  Statistics   21: 75-78. 

Samuelson, P. A. 1986. Deterministic Chaos in Economics : An Occurrence in Axiomatic 

Utility Theory. mimeo. M.I.T. 

Sargent, T. J. 1987.   Dynamic  Macroeconomic Theory..  p 263. Cambridge, Mass: 

Harvard University Press. 



System Dynamics Review Evidence of Economic Chaos                                                                    

35 

Sayers, C. 1986. Workstoppages: Exploring the Nonlinear Dynamics. mimeo. University of 

Wisconsin-Medison. 

Scheinkman, J., and B. Le Baron. 1987. Nonlinear Dynamics and GNP Data. mimeo. 

University of Chicago. 

Schuster, H. G. 1984. Deterministic Chaos,  An Introduction.  Weiheim: Physik-Verlag. 

Sims, C. 1986. Commentaries on the Grandmont paper "Endogenous Competitive Business 

Cycles", in  Models  of  Economic  Dynamics , Lecture Notes in Economics and 

Mathematical Systems Vol. 264, H. F. Sonnenschein ed., pp. 37-39. Berlin: Springer-

Verlag. 

Simon, H. A. 1979. Rational Decision Making in Business Organizations. The Nobel 

 lecture delivered in Stockholm, Sweden, December 8, 1978,  American Economic  

Review     69: 493-513. 

Solomon, A. M. 1981. Financial Innovation and Monetary Policy, in Sixty - seventh    

Annual   Report  . Federal Reserve Bank of New York. 

Sterman, J. D. 1985. A Behavioral Model of the Economic Long Wave. Journal   of   

Economic   Behavior   and   Organization.   6: 17-53. 

Stutzer, M. J. 1980.  Chaotic Dynamics and Bifurcation in a Macro Model.   Journal of  

Economic  Dynamics  and  Control    2: 353-376. 

Takens, F. 1981. Detecting Strange Attractors. in Dynamical  Systems  and  Turbulence, 

Lecture Notes in Mathematics, No. 898, D. A. Rand and L. S.  Young eds., pp.366-

381. Berlin: Springer-Verlag. 

Tversky, A. and D. Kahneman. 1974. Judgement under Uncertainty: Heuristics and Biases.  

Science.   185: 1124-1131. 

Van Duijn, J. J. 1983. The  Long  Wave  in  Economic  Life.  London: Allen and Unwin. 

Wolf, A., J. Swift, H. Swinney, and J. Vastano. 1985. Determining Lyapunov Exponents 

from a Time Series. Physica   16D: 285-317. 

Zarnowitz, V. 1985. Recent Work on Business Cycles in Historical Perspective: A Review 

of Theories and Evidence. Journal   of   Economic  Literature   23: 523-580. 

 



System Dynamics Review Evidence of Economic Chaos                                                                    

36 

Figure captions 

Fig. 1. Comparison of the time series of model solutions. Their time units are arbitrary. (a) 

AR(2) linear stochastic model. (b) Discrete logistic chaos generated by mapping  

X(t+1) = 4X(t)[1-X(t)]. (c) Rossler model of spiral chaos with time interval dt = 

0.05. 

Fig. 2. Comparison of the phase portraits of model solutions.N=1000. (a) AR(2) model 

with T=20. (b) Logistic chaos with T=1. (c) Rossler model with T=1 and dt 

=0.05. 

Fig. 3. Comparison of the autocorrelations of the three model solutions with 1000  data 

points. The time units are same as in Figure 1. 

Fig. 4. The exponential growth trends in time series of monetary aggregates :Official 

simple-sum index SSM2 and Divisia index DDM2 (January 1969 - July 1984). 

The time unit is one week. 

Fig. 5. Comparison of the detrended weekly time series SSM2. (a) Symmetric LD 

SSM2: the log linear detrended SSM2 with a natural growth rate of 4 percent per  

year.  (b) Asymmetric FD SSM2 : the logarithmic first differences of SSM2. 

Fig. 6. Comparison of the phase portraits of empirical time series. Time delay T=20. (a) 

LD SSM2 time series. Time unit is one week. N=807 points.  (b) IBM daily 

common stock returns. The time interval is one day. N=1000 points, beginning on 

July 2, 1962.  

Fig. 7. Comparison of autocorrelation functions; AC(I) plotted against I.  There are three 

time series: LD SSM2, LD DDM2 and IBM daily stock returns, each in their 

original time units. N=807. 

Fig. 8.  An artist's sketch of the Wolf algorithm. The lower line, y(t), is the reference orbit. 

The upper broken line, z(t), starting in the neighborhood of y(t0), is traced to 

calculate the divergence of the lines.  The points z0(t1), z1(t2), . . ., are replaced by 

new nearest neighboring points z1(t1), z2(t2) after an evolution time EVOLV for 

numerical calculation. 
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Fig. 9. The maximum Lyapunov exponents of log linear detrended monetary aggregates 

LD SSM2 and LD DDM2. The maximum Lyapunov exponents of monetary 

aggregates plotted against the evolution time EVOLV, calculated in phase space 

with time delay T=5 weeks and embedding dimension m=5. The unit is bit per 

week. The evolution time EVOLV in calculating numerical Lyapunov exponent 

varies from 15 to 180 weeks at 15-week intervals.  

Fig. 10. The Grassberger-Procaccia plots for calculating correlation dimension of LD 

SSM2 time series with time delay T=5. The embedding dimension m=2, . . . , 6,  

is taken as a parameter. (a) Plots of ln2 Cm(R) versus ln2 R, The plots rotate 

downwards and to the right as m increases.  (b) Plot of the slopes of the curves in 

(a) against the ln2 R. The linear region of the curves in (a) can be identified from 

the plateau region in (b). The correlation dimension is equal to the saturated slope 

1.5 for LD SSM2 measured from the plateau region with m=5. 

Fig. 11. (a) and (b) The Grassberger-Procaccia plots for calculating correlation 

dimension  of LD DDM2. Its correlation dimension is 1.3. 

Fig. 12. The flow diagram for a delayed feedback system of economic growth. 

Fig. 13. The time sequences of the numerical solutions of Eq.13. The parameters were 

fixed at a=0.1 and τ=1 while changing the parameter b.  (a) Period-1 solution P1 

(limit cycle) with b=5.7.  Its cycle number is C1. (b) Period-2 solution P2 (C2) 

with b=5.8.  (c) Chaotic solution CH with b=6.0.  (d) Period-3 solution P3 (C3) 

with b=6.3. 

Fig. 14. (a)-(d) The phase portraits X(t+T) versus X(t) of the solutions of Eq.13. 

Parameters are the same as the ones in Figure 13.  Here, time interval dt =0.05 

and time delay T=1. A typical strange attractor can be seen in (c).  

Fig. 15. (a)-(d) The power spectra of the solutions of Eq.13. The number of sampling 

points is 4096. Only the lower quarter of the spectrum is displayed. The 

parameters are same as in Figure 13. The highest peak in all plots is the 
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fundamental frequency f1. The second highest peak is the subharmonic frequency 

f2, which can be seen in (b) and (d). A typical chaotic spectrum is shown in (c). 

Fig. 16. The phase diagram of numerical solutions of Eq.16 in parameter space aτ and bτ. 

The dashed area in (a) is enlarged in (b).  Here, EP, ST, and CP represent 

explosive regime, steady state (after damped oscillation), and complex regime, 

respectively. CH is chaotic regime. C1, C2, and C3 are periodic patterns, whose 

longer wave consists of one, two, or three shorter waves in turn. 

Fig. 17. The time path of medium-term growth cycles simulating LD SSM2 time series in 

Figure 5a by means of Eq.12. Its long-term picture is the same as that in Figure 

13c with a changed time scale. 


