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Abstract 
 
 

 One basic problem in business cycle studies is how to deal with 
nonstationary time series. Trend-cycle decomposition is critical for testing 
competing dynamic models, including deterministic and stochastic approaches 
in business cycle theory.  

A new analytical tool of time-frequency analysis, based on the symmetry 
principle in frequency and time, is introduced for studies of business cycles. The 
Wigner-Gabor-Qian (WGQ) spectrogram shows a strong capability in revealing 
complex cycles from noisy and nonstationary time series.  

Competing detrending methods, including the first difference (FD) and 
Hodrick-Prescott (HP) filter, are tested with the mixed case of cycles and noise. 
FD filter does not produce a consistent picture of business cycles. HP filter 
provides a good window for pattern recognition of business cycles. 

Existence of stable characteristic frequencies from economic aggregates 
provide strong evidence of endogenous cycles and valuable information about 
structural changes. Economic behavior is more like an organism instead of 
random walks. Remarkable stability and resilience of market economy can be 
seen from the insignificance of the oil price shocks and the stock market crash. 
Surprising pattern changes occurred during wars, arm races, and the Reagan 
administration. Like microscopy for biology, nonstationary time series analysis 
opens a new space for business cycle studies and policy diagnostics.  

The role of time scale and preferred reference from economic observation is 
discussed. Fundamental constraints for Friedman's rational arbitrageurs are re-
examined from the view of information ambiguity and dynamic instability. 
Nonlinear economic dynamics offers a new perspective in empirical 
measurement and theoretical analysis. 

 
 JEL  #C1, C2, C5, E3, N1.
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Analyzing business cycles means neither more nor less than analyzing the economic 
process of the capitalist era. 

Cycles are not, like tonsils, separable things that might be treated by 
themselves, but are, like the beat of the heart, of the essence of the organism that 
displays them. 

 
Joseph A. Schumpeter 
Business Cycles, A Theoretical, Historical, and 
Statistical Analysis of the Capitalist  Process 
McGraw-Hill, New York (1939). 

 
 
I.  Introduction 

An alternative title for econometric literature could be: "Business cycle 
measurement without model specification." 

One basic difficulty in business cycle studies is that measurement is behind 
observation. We need analytical tools to characterize economic complexity. 
Hitherto, studies of business cycles are based on two alternative methods in time 
series analysis. Correlation analysis measure mean, variance, and correlations 
based on the covariance-stationary model of i.i.d. (the identical independent 
distribution) process in the time domain. The Fourier spectral analysis measures 
frequency and amplitude based on the cycle-stationary harmonic oscillations in 
the frequency domain. However, all these quantities are subject to changes in the 
time scale of business cycles. Real signals of economic movements contain both 
stochastic and deterministic components; therefore, we need new tools in time 
series analysis and business cycle modeling. 

Economists realize the need to study nonlinearity and nonstationarity. There 
are two strategies to address the issue. One strategy is developing nonlinear and 
nonstationary versions of correlation analysis [Granger and Teräsvirta 1993]. 
Another strategy is developing nonlinear and nonstationary representations of 
spectral analysis  [Chen 1993a]. We will focus on the second approach in this 
paper, since it is still in its infancy.  

To address time-dependent phenomena, we introduce a new tool of time-
frequency analysis which originated in quantum mechanics and acoustic physics 
[Wigner 1932, Gabor 1946]. A recent development in signal processing provides 
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an efficient algorithm to calculate time-frequency distribution, which is a 
powerful tool to identify deterministic components from short and noisy signals 
[Qian and Chen 1994a, b, Chen and Qian 1993].  

Most economic indicators have fluctuations around a growth trend. Different 
detrending methods lead to competing perspectives in business cycle theory. 
Two detrending methods are tested by time-frequency analysis: the first 
differencing (FD) and the Hodrick-Prescott (HP) smoothing filter. We find HP is 
much better than FD in revealing deterministic patterns from economic time 
series. 

From a wide range of aggregate data, we find the existence of persistent 
cycles, in addition to color noise. Spectral analysis not only provides 
complementary evidence of "co-movements" of business fluctuations [Lucas 
1981, Kydland and Prescott 1990], but also reveal distinctive patterns of 
frequency evolution. It is found that characteristic frequencies of business 
indicators are remarkably stable. Only minor changes occurred under such 
events, for example,  the oil price shocks in 1973 and the stock market crash in 
1987. Surprisingly, more significant changes happened during the Vietnam War 
and the Reagan administration. The time lag between frequency responses of 
different indicators provide important information about the propagation 
mechanism in the real economy. A new approach of economic diagnostic and 
policy evaluation can be developed quantitatively. 

The new perspective of time-frequency analysis indicates fundamental 
barriers for Friedman's rational arbitrageurs against market disequilibrium. The 
role of time scale, observation reference, dynamical instability, and information 
ambiguity in studies of business cycle theory is discussed. 

 
II. Time-Frequency Representation and Complex Economic Dynamics 

It is known that the deterministic and the stochastic approach are 
complementary representations of dynamical systems. There are trade-offs in 
finite realizations of empirical signals. Which representation is useful in  science 
is not a matter of philosophical debate, but a subject of empirical experiment.  

Recent development of nonlinear economic dynamics demonstrates that 
business fluctuations can be explained by deterministic chaos [Benhabib 1992, 
Day and Chen 1993]. Standard tests of deterministic chaos are based on the phase 
space representation. The phase space approach has limited applications in 
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empirical analysis, since a large number of data points and low level of noise is 
needed to calculate correlation dimension or construct the Poincáre section 
[Chen 1988, 1993a, b]. In contrast, time-frequency analysis has a much stronger 
power to deal with noisy data.  

Time-frequency analysis is a powerful tool in distinguishing white noise and 
complex cycles. Complex cycles are nonlinear chaotic cycles with irregular 
amplitudes and sophisticated frequency patterns that are generalizations of 
linear harmonic cycles with regular amplitudes and well-defined frequencies. 
 

(2.1) Time-Frequency Distribution and The Uncertainty Principle  
The simplest time-frequency distribution is the short-time Fourier transform 

(STFT hereafter) by imposing a shifting time window in the conventional Fourier 
spectrum. STFT has poor resolution in the frequency domain caused by the finite 
square window in the time domain.  

The Wiener-Khinchine theorem indicates that the autocorrelation and the 
power spectrum are Fourier pairs for a continuous time stationary stochastic 
process [Priestley 1981]. A natural generalization for the  nonstationary process 
is introducing the instantaneous autocorrelation function Rt (τ) in the time-

dependent power spectrum P(t, ω): 
  

 τωττ
π

ω diRtP t )exp()(
2
1

),( −= ∫   (2.1) 

 
where the angular frequency ω = 2πf.  

Considering a symmetric time window,  Rt(τ) can be replaced by the kernel 

function s(t + 
τ
 2 ) s*(t - 

τ
 2 ) to produce a time-dependent power spectrum called 

the Wigner distribution (WD) [Wigner 1932]:  
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2
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An important development in time-frequency analysis is the Gabor 

expansion [Gabor 1946]. The best resolution in the frequency domain can be 
achieved by imposing a Gaussian window according to the uncertainty principle 
in signal processing [Gabor 1946, Papoulis 1977]: 
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π4
1≥∆∆ ft          (2.3) 

 
where the equality holds only for the Gaussian function.  

Unfortunately, both the Wigner distribution and the Gabor expansion are un-
orthogonal. The Wigner distribution is hard to calculate in continuous time 
because cross-interference terms are generated by non-orthogonal bases.   

A synthesis of these two approaches  (WGQ hereafter) leads to a good 
resolution and efficient algorithm [Qian 1992, Qian and Chen 1994a, b].* The 
Wigner distribution can be decomposed via the orthogonal-like Gabor 
expansion in discrete time and frequency.  The localized symmetric base 
function has the form: 
 
 WDb (t, ω)  = 2 exp{- [ (t/σ)2 + (ωσ)2 ] }   (2.4) 

 
The time-frequency distribution series are constructed as approximations of 

the Wigner distribution. 
 

 ),(),(
0

ωω tPtTFDS
D

dD ∑=   (2.5) 

 
The zero-th order of time-frequency distribution series leads to STFT. The 

infinite order converges to the Wigner distribution. For applied analysis, 2nd or 
3rd order is a good compromise in characterizing frequency representation 
without severe cross-term interference.  

The WGQ representation in time-frequency analysis have important 
properties in physics and economics. The Wigner distribution ensures the 
conservation of energy density. This implies the conservation of variance in a 
time series analysis that is a key constraint in statistical analysis. The Gabor 
expansion catches periodic components under local observation. The time-

                                                 
* The numerical algorithm has no specific name in the academic field. The originators call their approach the time-
frequency distribution series from the view of mathematical formulation. The computer software is marketed by 
the National Instruments under the commercial name of Gabor spectrogram as a tool kit in the LabView System. 
The term WGQ representation is proposed by the author from the view of theoretical physics. Certainly, the 
author will take sole responsibility for this term. We will address this issue elsewhere. 
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frequency distribution series retain leading terms in the energy distribution. 
These features are critical in analyzing complex dynamics. 

 
(2.2) Time-Frequency Analysis of Noise and Chaos  

The development of nonlinear dynamics provides an alternative model of 
seemingly erratic movements: deterministic chaos, including white chaos (such 
as the logistic map and Henon map) in discrete time and color chaos (such as 
Rössler model) in continuous time [Hao 1990]. The "color" of continuous time 
chaos is characterized by its characteristic frequency fc or characteristic period Pc 

observed in spectral analysis.  
There are some limitations for spectral analysis in testing deterministic chaos. 

To avoid aliasing effect, the standard frequency window in spectral analysis is 
one half, or Pmin, the lowest period observable, is two. The characteristic period 

and the characteristic frequency of white chaos is equal to one. Therefore, white 
chaos is outside the observational window. Spectral analysis alone is not 
sufficient to test the existence of color chaos; complementary measurements are 
needed  [Chen 1993a]. For studies of business cycles, the discovery of a 
characteristic frequency of erratic time series provides essential information 
about the components of deterministic cycles, regardless of whether they are 
pure color chaos or mixed color noise.  

In testing deterministic chaos, the power spectrum plays an important role in 
studying color chaos in laboratory experiments [Swinney and Gollub 1978].  In 
testing chaotic signals,  thousands to hundreds of thousands' of data points are 
required by the power spectrum. The noise level should be kept between 2 to 5 
percent. The WGQ spectrogram has much stronger power to distinguish 
deterministic cycles from stochastic noise [Chen and Qian 1993a, Chen 1993c].  

The strong power of time-frequency analysis can be understood from the 
energy distribution of signals. White noise is evenly distributed in time- 
frequency space while deterministic cycles are highly localized. The noise level 
in the power spectrum is an integration of the energy distribution in the time 
domain; therefore, the time-frequency distribution has a much higher 
signal/noise ratio than that of the power spectrum. For example, the 
autoregressive (AR) model can produce artificial cycles in the power spectrum. 
It cannot generate a stable frequency line in time-frequency representation [Chen 
and Qian 1993].  
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Econometric analysis assumes that all economic variables are random 
variables. From the view of signal processing and pattern recognition, testing  
mixed signals of cycles and noise is a more realistic task. Our investigation will 
focus in this direction. Typical WGQ representations of noise and chaos are 
shown in Fig. 1.   
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 (1a). Gaussian white noise. No stable frequency line exists. 
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(1b) Rössler strange attractor is generated by three-dimensional 
differential equations: dX/dt =-Y-Z, dY/dt= X+0.2Y, dZ/dt= 0.2-
5.7Z+XZ (Rössler 1976).  The time unit is adjusted to appear a 
business cycle frequency.  
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(1c) Color noise modeled by Rössler chaos plus 200% noise (measured by 
the standard deviation).  
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(1d) Color chaos generated by the soft-bouncing oscillator with two time 
delays (Wen 1994). dX/dt = 100 X(t-0.183) exp[-200 X(t-0.183)2] - 6 X(t-
0.183) - Y(t-0.048), dY/dt = X(t).  
 

Fig. 1. The WGQ spectrogram of noise and chaos. N=256. 
 

Under WGQ representation, deterministic signals are characterized by a 
localized horizontal zone in the time-frequency space, while noise signals are 
featured by drop-like images distributed in wide time-frequency space.  The 
patterns of color noise and color chaos are not easy to distinguish under 
numerical analysis, especially in the case of high-dimensional chaos [Wen, 
Chen, and Turner 1994, Wen 1993, 1994].  

 
 

III.  Trend-Cycle Decomposition and Noise-Cycles Identification 

The detrending problem in business cycle studies is closely related to the 
observation reference in economic theory. Many controversial issues in 
macroeconomic studies, such as the over-smoothness of consumption, the excess 
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volatility of stock prices, and the debate of chaos versus noise in economic 
aggregates, are closely related to competing detrending methods [Hall 1978,  
Shiller 1989, Brock and Sayers 1988, Barnett and Chen 1988, Chen 1988, 1993a].  

Two most popular detrending methods are log-linear detrending and  
differencing detrending. Their theoretical frameworks are called trend-stationary 
(TS) and difference-stationary (DS) time series. The HP filter is a generalization 
of the log-linear detrending [Hodrick and Prescott 1981].  

Econometric studies of detrending filters are based on a key assumption that 
economic time series can be characterized by linear stochastic processes [Nelson 
and Plosser 1982]. The main analytical tools are correlation analysis and 
frequency analysis of stationary process [King and Rebelo 1993]. The whole 
picture will be quite different, if testing signals are not generated by white noise, 
but by color noise. In testing the performance of FD and HP filters, we use 
simulated time series of color noise and a wide range of empirical data, 
including sixteen economic aggregates.  

 
(3.1) Correlation Cancellor (FD) and Trend Smoothing Filter (HP) 

The differencing procedure can be considered as a linear filter f(L) or F(L), 
with L as the lag operator. 

 
Y(t) = X(t)-X(t-1) = ∆X(t) = f(L) X(t) = (1-L) X(t)    (3.1) 
 
X(t) = F(L) Y(t) = (1-L)-1Y(t)       (3.2) 
 
The differencing is a non-invertible filter with marginal stability. Its main 

function in econometric modeling is a correlation cancellor. Actually, the 
differencing is not a whitening device but a "violeting" one, since it dampens 
low frequency components but amplifies high frequency components.  
Differencing generates an erratic time series when the time unit is not small as 
compared to serial correlations. The discontinuity caused by differencing can be 
described by a step function whose Fourier transform is a delta function 
[Papoulis 1977]; therefore, differencing may introduce a zero-frequency (dc) 
component. This often happens with trendy time series.  

An alternative way is to find a smooth trend by fitting log-linear or 
polynomial functions. A difficulty is the choice of period boundaries in trend 



 12 
  
   

removing. This problem can be alleviated by the Hodrick-Prescott (HP) "trend 
smoothing" algorithm [Hodrick and Prescott 1980].  

The HP filter is a linear transformation of the original time series { X(i) } into a 
smooth time series { G(i) } by minimizing the following objective function 

 
∑ ∑ −−−−++− 22 )]}1()([)]()1({[)]()([ tGtGtGtGtGtXMin λ   (3.3) 

 
Deviations from { S(i) } are considered as the cyclic component: 
 
C(i) = X(i) - G(i)         (3.4) 
 
Empirical time series can be decomposed into "smooth" growth series { G(i) } 

and cyclic series { C(i) }. The characteristic period of HP short cycles depends on 
the penalty parameter of λ. λ is chosen in such a way that the variance of the 
growth component is much less than that of the cyclic term [Hodrick and 
Prescott 1980]. In practice, the recommended value of λ is 400 for annual data, 
1600 for quarterly data, and 14400 for monthly data.  

The penalty term in Eqn. (3.3) is the second difference in the growth series. 
When λ goes to infinity, the growth trend is a linear function. For logarithmic 
data, log-linear detrending corresponds to the limiting case in HP 
decomposition. HP growth trends are less rigid than the log-linear function and 
HP cycles are less erratic than differencing. Certainly, HP growth trends provide 
little information about growth cycles and long waves. A more generalized 
algorithm of multi-level symmetric decomposor will be further developed to 
analyze multiple frequencies in business cycles [Chen and Qian 1993]. 

A typical example of economic time series is showed in Fig. 2. The erratic 
feature of FD series and the wavelike feature of TS cycles are visible from their 
autocorrelations. 
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(2a) Log-linear trend and HP growth trend. 
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(2b) TS (trend-stationary) series from HP (Hodrick-Prescott) filter. 
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 (2c) DS (difference-stationary) series form FD (first difference) filter.  
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(2d) Autocorrelations of HP and FD cycles.  

 
Fig. 2. The logarithmic FSPCOM (the S&P 500 stock price index)  

monthly data (1947-92). N=552.   
 

(3.2) Correlation Analysis of Noise and Cycles 
Correlation analysis is capable of revealing the existence of deterministic 

cycles when we examine cyclic movements in serial correlations. We may define 
the decorrelation time T measured by the lag length of the first zero in 
autocorrelations [Chen 1988, 1993a]. Usually, the time lags in correlation analysis 
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are integers. Here, the fractal length of decorrelation time is calculated from 
linear interpolation in the framework of continuous time.  

The decorrelation period Pdc  can be defined as following: 

 
tTPdc ∆= 4         (3.5) 

 
where ∆t is the time unit of the time series.  

For deterministic cycles, Pdc is close to the characteristic period Pc measured 

by the peak in the power spectrum. For random signals, T has no implication of 
cyclic movement.  

We can see that the FD filtered time series have a shorter T or smaller Pdc as 

compared to HP filtered series [Table I].  
____________________________________________________________________ 

Table I. Correlation and Variance Analysis of Filtered Time Series 
______________________________________________________________________ 
Series ∆t Period N λ σhp Thp σfd Tfd 

______________________________________________________________________ 
GDPQ* Q 1947-92 184 1600 0.0180 4.83 0.0102 3.51 
LBOUTU* Q 1947-92 184 1600 0.0104 4.22 0.0081 3.40 
GCQ* Q 1947-92 184 1600 0.0117 4.93 0.0077 3.72 
GCDQ* Q 1947-92 184 1600 0.0547 4.95 0.0416 2.58 
GPIQ* Q 1947-92 184 1600 0.0822 3.73 0.0535 2.71 
FSPCOM* M 1947-92 552 14400 0.0750 8.93 0.0340 1.95 
FSDXP M 1947-92 552 14400 0.3420 8.41 0.1670 1.84 
FYGT10 M 1953-92 480 14400 0.6305 9.80 0.3198 1.73 
FM1* M 1959-92 408 14400 0.0116 11.03 0.0049 20.84 
FM2* M 1959-92 408 14400 0.0099 11.37 0.0034 24.87 
GMYFM2* M 1947-92 552 14400 0.0154 10.3 0.0073 4.99 
LHUR M 1948-92 540 14400 0.6398 9.38 0.2340 8.94 
PZRNEW* M 1947-92 552 14400 0.0103 11.99 0.0040 88.82 
FYFF M 1955-92 456 14400 1.2898 10.64 0.6377 1.98  
FYCP90 M 1971-92 264 14400 1.3860 10.5 2.4630 1.79 
EXRJAN M 1959-92 408 14400 11.270 9.70 4.7500 5.68 
_______________________________________________________________________ 
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where the time unit (∆t) is Q (quarter) for quarterly data and M (month) for 
monthly data; N, number of observations; λ, the HP parameter; σ, the standard 

deviation; T, the decorrelation time (in ∆t). Subscripts of hp and fd are for HP 
and FD series respectively. 

Among the empirical time series, GDPQ is the real gross domestic products 
in 1987 US dollars, LBOUTU is the non-farm output per hour; GCQ is the total 
consumption; GCDQ is the durable consumption; GPIQ is the domestic 
investment; FSPCOM is the S&P 500 composite monthly index; FSDXP is the 
S&P common stock composite dividend yield; FYGT10 is the 10 year Treasure 
Notes; FM1 is the Federal Reserve monetary supply M1 index; FM2 is the 
Federal Reserve monetary supply M2 index; GMYFM2 is the velocity of money; 
LHUR is the unemployment rate; PZRNEW is the consumer price index for all 
items; FYFF is the rate of Federal Funds; FYCP90 is the three month commercial 
paper rate and EXRJAN is the exchange rate of Japanese Yen vs. U.S. dollar. All 
quantity data marked by the * symbol are in logarithm. The source of these data 
is the Citibank Database. 

 
We should point out that the very long Tfd for FM1 and FM2 differenced data 

is caused by residual trends in first differenced data. These are good examples 
that multiple differencing may be needed to remove trends.  

 
(3.3) Characterizing the randomness and instability in the frequency domain 

In a time series analysis, the degree of whiteness is often examined by its 
autocorrelations in the time domain. We will introduce some useful indicators of 
randomness and instability in the frequency domain.  

Given a time series S(t), t = 1, 2, . . . , T, we can calculate its power spectrum 
Ri, i = 1, 2, . . . , M. We define γ as the degree of randomness of a time series in 

terms of the discrete-time information entropy in the frequency domain: 
 

ψ
γ ∑=

)(log 2 ii pp
        (3.7) 

 

∑
=

= M

i
i

i
i

R

R
p

1

         (3.8) 
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ψ = log 2 M          (3.9) 

 
Here, Ri is the power intensity of frequency i calculated from the power 

spectrum; pi, the probability of frequency i and M, the number of states in the 

frequency domain. ψ is the normalization factor which is equal to the maximum 
entropy of white noise, whose pi = M-1. In ideal cases, γ is zero for periodic 

motion and 1 for white noise. The degree of randomness of color chaos or color 
noise will fall in between. In numerical tests, r is less than 0.3 for periodic cycles, 
and larger than 0.9 for the Gaussian noise depending on the size of data. 

From the time-frequency distribution F(f,t), we can identify the peak 
frequency distribution f(t) and calculate useful statistics to characterize peak 
frequency f(t). For changing frequency of nonstationary time series, the 
characteristic frequency fc is a function of time. The peak frequency f(t) can be 

determined at each time intersection in a time-frequency representation.  The 
characteristic frequency fc can be measured by the mean value of the peak 

frequency.  Its frequency instability can be defined by the standard deviation of  
the peak frequency.  

We define ς as the degree of frequency instability measured by the 
percentage of white noise frequency bandwidth: 

 
ς = std(f(t))/W         (3.10) 
 

Here W=0.5 for the full band window in spectral analysis. For stable periodic 
cycles, ς is near zero. For random process, ς is close to one. The frequency 
instability can be considered as a measure of internal randomness caused by 
frequency evolution over time. For example, a harmonic oscillator with 
wandering frequency may appear as random signals in Fourier spectrum, even 
though its deterministic nature can be seen from time-frequency analysis 

Similarly, we may also define the frequency variability v as the percentage 
ratio of the standard deviation to the mean frequency. 

 
ν = std(f)/fmean *100%        (3.11) 

 
We will use the above quantitative measures in studies of filter performance 

for mixed signals of noise and cycles. 
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(3.4) Color Residuals and Time Unit Consistency 

We use the FSPCOM time series to demonstrate the performance of FD and 
HP filter in studies of business cycles. WGQ spectrograms are given in Fig. 3. 
The residual statistics under time-frequency representation are given in Table II. 
The residual statistics in the frequency domain under different time units are 
given in Table III. We can see that these residuals are far from white noise in 
spectral analysis.  
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(3a). First differences. 
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(3b). HP cycles (λ=14400).  

Fig. 3. The WGQ Spectrogram of the logarithmic FSPCOM N=552. 
 

______________________________________________________________________ 
Table II. Time-Frequency Analysis of FSPCOM Filtered Cycles 

_______________________________________________________________________ 
Filter fmean std(f) ς  ν Pmean Pmin Pmax 

_______________________________________________________________________ 
HP (λ=14400) 0.0265 0.0057 0.0114 22 3.1 0.70 4.73 
FD 0.0893 0.0886 0.1772 99 0.9 0.25 inf 
_______________________________________________________________________ 
Here, the time unit of periods is a year. The sampling time interval ∆t is 1/12 of 
a year; std(f), the standard deviation of peak frequency over time; fc = fmean; Pc = 
Pmean = ∆t/fmean;  Pmin and Pmax , the range of peak period over time; ς,  the 

degree of frequency instability and v, the frequency variability (%). 
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______________________________________________________________________ 
Table III. Spectral and Correlation Analysis with Changing Time Unit 

_______________________________________________________________________ 
Name ∆t Filter γ Pc(yrs) T(∆t) Pdc(yrs) std(t) 

________________________________________________________________________ 
FSPCOM M FD 0.8895 inf  1.9 0.6 0.0338 
 Qf FD 0.8831 inf  1.4 1.4 0.0707 
 Qv FD 0.8384 inf  2.0 2.0 0.0578 
 Af FD 0.7075 inf  0.1 0.4 0.1136 
 Av FD 0.6475 inf  1.5 6.1 0.0895 

 -------------------------------------------------------------------------------------------------
 M HP  (λ=14400) 0.5501 3.6  8.9 3.6 0.0752 
 Qf HP  (λ=1600) 0.7366 4.0  3.5 3.5 0.0892 
 Qv HP  (λ=1600) 0.6659 3.8  3.5 3.5 0.0834 
 Af HP  (λ=400) 0.7982 3.8  1.8 7.1 0.1161 

 Av HP  (λ=400) 0.6592 5.1  1.7 6.7 0.0863 

________________________________________________________________________ 
Here, γ is the frequency information entropy indicating the degree of 
randomness; Pc, the characteristic period in power spectrum; T, the decorrelation 
time; Pdc, the decorrelation period and std(t), the standard deviation in time 

domain.  
Two methods of constructing a time series in a larger time unit are used. Qf (Af) 

series are constructed by picking up the figure of the final month (quarter) in the 
season (year). Qv (Av) series are constructed by averaging value in the season 

(year). 
 
We can see that the FD filter does not provide a consistent picture of a 

detrended series. The frequency information entropy indicates that the FD 
residuals are not white. The band width of the FD residuals is less than 20% of 
white noise. There is a strong component at near zero-frequency caused by the  
discontinuous nature of differencing time series.  The FD filter fails to produce a 
consistent picture under the changing time unit. Changing the time unit will 
change the length of decorrelation time and the magnitude of variance. The FD 
filter plays a destructive role in testing the cyclic signals. The time-frequency 
representation shows that noisy signals of high frequencies are strongly 
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amplified, while the deterministic cycles in the range of business cycles are hard 
to recognize from the FD filtered series. The negative effects of the FD filter are 
not visible for pure deterministic or pure stochastic signals, but are quite severe 
for noisy data with growth trends.  

In contrast, the HP filter provides a consistent picture of persistent cycles 
from an economic time series when the sampling rate is large enough to detect 
business cycles (quarterly or monthly, but not annual data). The characteristic 
periods for economic aggregates are highly stable, since they are slightly 
changing over time. The frequency variability of HP cycles is as low as less than 
three percent. The characteristic period Pc from spectral analysis and 
decorrelation period Pdc from correlation analysis are remarkably close. This is 

strong evidence of deterministic cycles. The magnitude of the characteristic 
period Pc is essentially invariant under the changing time unit. Time unit 

consistency paves the way for refined measurement and generalized theory.   
Previous claims of unit roots in aggregate data are produced from fitting 

annual or quarterly data to low-order ARMA (autoregressive and moving 
average) models [Nelson and Plosser 1982, Campbell and Mankiw 1987]. There 
is no evidence of the unit root process since FD-filtered quarterly and monthly 
data are far from white under spectral representation [Chen 1993c].  

 
 

IV. Frequency Patterns and Dynamical Changes in Business Cycles  

The HP filtered economic time series show clear evidence of persistence 
cycles in the time scale of business cycles defined by NBER documentation 
[Zarnowitz 1992]. We will further examine their frequency patterns and 
structural changes by time-frequency analysis.  

In econometric modeling and business cycle theory, variance-correlation 
analysis is the main tool in characterizing volatility and propagation mechanism 
[Kydland and Prescott 1990]. Structural changes are described by parameter 
changes in parametric models [Perron 1989, Friedman and Kuttner 1992]. The 
time-frequency representation provides a new tool in observing dynamical 
patterns in business cycles.  
 
(4.1) Frequency Stability and Structural Flexibility 
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We tested a wide range of aggregate data. Most of them have distinct color, 
or characteristic frequency. The empirical results of sixteen economic aggregates 
from time-frequency analysis are given in Table IV. The period evolution for 
general indicators, such as GDPQ, LHUR, and LBOUTU are shown in Fig. 4.   
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(4a). GDPQ (the real gross domestic products) HP cycles. N=184. 
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(4b). LHUR (the unemployment rate) HP cycles. N=540. 
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(4c) LBOUTU (the labor productivity) HP cycles. N=184. 

Fig. 4. Period Evolution of General Indicators. 
 

We find that the only frequency break of GDPQ HP cycles was caused by the 
first oil price shock in 1973. This observation provides complementary support 
to trend-shifting argument based on the parametric test [Perron 1989].  

However, the oil price shock only had a minor impact on most 
macroeconomic indicators. For LHUR HP cycles, the first frequency shift 
occurred within the Korea War, the second and more dramatic change appeared 
in early 1980's. For LBOUTU, a significant change happened in the early 1980's. 
Most economic indicators show more complex patterns of frequency evolution 
in history.  
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________________________________________________________________________ 
Table IV. Frequency Stability and Variability of HP Short Cycles 

________________________________________________________________________ 
Series ∆t Period N  Pdc Pc(yrs) ν (%)   

________________________________________________________________________ 
GDPQ Q 1947-92 184   4.8 5.4 23   
LBOUTU Q 1947-92 184   5.1 4.2 26   
GCQ Q 1947-92 184   4.4 4.9 47  
GCDQ Q 1947-92 184   4.4 5.0 49   
GPIQ Q 1947-92 184   4.4 3.7 34   
FSPCOM M 1947-92 552  3.1 3.0 22  
FSDXP M 1947-92 552  2.9 2.8 37   
FYGT10 M 1953-92 480  3.1 3.3 37   
FM1 M 1959-92 408  3.7 3.6 46   
FM2 M 1959-92 408  3.9 3.3 46   
GMYFM2 M 1947-92 552  3.8 3.4 32   
LHUR M 1948-92 540  3.9  3.1 23   
PZRNEW M 1947-92 552  4.0 4.0 27   
FYFF M 1955-92 456  3.6 3.5 51   
FYCP90 M 1971-92 264  3.1 3.5 73   
EXRJAN M 1959-92 408  3.0 3.2 57   
________________________________________________________________________ 
Here, Pdc is the decorrelation period from correlation analysis; Pc, the 

characteristic period from time-frequency analysis and ν and frequency 
variability [see Fig. 5-6]. 
 

 Examining the frequency stability of HP cycles under a time-frequency 
representation, the characteristic frequency of LBOUTU is most stable, while 
those of FYFF and FYCP90 are most variable. The other aggregates are in 
between. There are several interesting observations to business cycle studies. 

First, the frequency stability of economic indicators is remarkable.  The 
variability of frequency is less than 80 percent. The band width is only about 1 to 
5 percent of white noise. Specifically, monetary movements cannot be 
oversimplified as external shocks because money indicators also have stable 
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characteristic frequencies. The monetary velocity is more stable than FM2 and 
the long-term interest rate is more stable than the short-term interest rate.  

Second, these characteristic frequencies have the similar range of magnitudes, 
but a distinctive pattern; therefore they are nonlinear oscillators in nature, 
because a linear combination cannot change the characteristic frequencies.  

Third, the stability and flexibility of the characteristic frequency under 
constant shocks cannot be explained by the Frisch-type linear oscillators [Frisch 
1933]. High-dimensional nonlinear oscillators are needed to describe persistent 
cycles observed from economic data. 

 
(4.2) Frequency Evolution and Pattern Classification 

Econometric modeling are used to treat economic aggregates as homogenous 
random variables. Under time-frequency representation, we find hard and soft 
cycles from their distinct patterns of frequency evolution [Fig. 5]. 
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(5a) GCDQ (the real durable consumption) HP Cycles. N=184. 
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 (5b) GMYFM2 (the monetary velocity) HP Cycles. N=552. 
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 (5c) FM1 (the money supply M1 index) HP cycles. N=408. 
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 (5d) PZRNEW (the consumer price index) HP cycles. N=552. 
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 (5e) EXRJAN (the Japanese /US exchange rate) HP Cycles. N=408. 
 

Fig. 5. Period Evolution of Hard & Soft Cycles 
 
Consumption, investment, and productivity are examples of hard cycles. 

They have piece-wise flat regimes, a reflection of stability and rigidity in 
frequency domain. Hard cycles are more stable against small changes but 
vulnerable under dramatic shocks. Hard cycles behave like an autonomous 
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subsystem such as the circulatory system and digestive system in humans. It is 
conceivable that consumption, investment, and technology have their own 
dynamics.  

Stock market indexes, monetary velocity, money supply, the consumer price 
index, interest rate, and exchange rate are examples of soft cycles. Soft cycles 
tend to move together since they have similar patterns in time-frequency space. 
A new kind of frequency co-movements reveals a close interaction between stock 
market, money market, and economic performance. 

We can further identify subgroups of economic indicators based on their 
pattern of similarity in frequency evolution. For example, both GDPQ and 
LBOUTU are insensitive to most historical events. GCQ, GDPQ, and GPIQ have 
similar rigidity and stability. Two stock market indicators, FSPCOM and FSDXP, 
and the long-term interest rate FYGT10 have almost the same pattern, even 
though their frequencies are not the same. The pairs of FYFF and FYCP90 also 
move together during frequency shifting. These observations provide useful 
information about the interacting mechanism and propagation dynamics. 
Examination of the time-frequency pattern will be a valuable guidance for 
business cycle modeling.  

For example, consumption and investment have closer interactions than 
income and price.  

Monetary movements have less an impact on stock market and the long-term 
interest rate than on the short-term interest rate.  

The role of money is not neutral in business cycles. The frequency pattern of 
monetary indicators are similar to that of the consumer price index and the 
unemployment rate but more variable than real income, investment, and 
consumption. Unlike seasonal changes in weather, government and monetary 
authority are integrated players in economic dynamics. Monetary movements 
have complex structures.  

The real GNP serves as an anchor in real business cycle modeling [Kydland 
and Prescott 1990]. However, real GNP is not a sensitive indicator for structural 
changes. The monthly data of the unemployment rate can be a better barometer 
of business cycles and structural changes. 

 
(4.3) Breaking Points and Propagation Mechanism 
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The breaking points in frequency evolution provide explicit information 
about the propagation mechanism. We can observe propagation speed and 
delay process by reviewing historical events.  

In econometric exercises, the issue of persistent shocks is not clear under 
regression analysis [Christiano and Eichenbaum 1990]. Impacts of historical 
shocks vary greatly under time-frequency representation. For example, two pairs 
of economic aggregates, stock market indexes of FSPCOM and FSDXP,  the 
Federal fund rate FYFF and the short term interest rate FYCP90, behave like 
synchronous cycles. In contrast, the frequency pattern of the long-term interest 
rate FYGT10 almost duplicates the pattern of stock market indicators. But the 
frequency hysteresis lasted about six years during the Vietnam War and oil price 
shocks [Fig. 6].  
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  (6a). FSPCOM (the S&P 500 stock index) HP Cycles. N=552. 
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 (6b) FSDXP (the S&P stock dividend yield) HP Cycles. N=552. 
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 (6c). FYGT10 (the 10 year treasure notes rate) HP Cycles. N=480. 
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 (6d). FYFF (the rate of Federal Funds) HP Cycles. N=456. 
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 (6e). FYCP90 (the 3-month commercial paper rate) HP Cycles. N=264. 

Fig. 6. Synchronous Cycles and Frequency Hysteresis  
 
Exceptional variability in Federal Fund rates and short-term interest rates are 

visible in Fig. 6. It is known that the pattern of monetary movements had 
changed greatly in 1980's [Friedman and Kuttner 1992]. The puzzling issue of 
"missing money" and other anomalies can be explained away by adding more 
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variables, such as long-term and short-term interest rates, in the error-correction 
model [Baba, Hendry, and Starr 1992]. This approach is skeptical under time-
frequency analysis since variables with different frequency responses cannot be 
easily put together in linear models.  

 
(4.4) Oil Shocks, Stock Market Crash, and the Vietnam War 

The extraordinary resilience of market economies can be revealed from the  
insignificance of the first oil price shock in October 1973 and the stock market 
crash in October 1987. Both events generated only slight changes of characteristic 
frequencies for most economic aggregates.  

We may have a closer look at frequency evolution in observing historical 
events [Fig. 6a, b]. Before the oil price shock in October 1973, the characteristic 
period of stock market indicators was stabilized at the level of 4.26 years since 
1971. After the oil price shock, the characteristic period of HP cycles changed to 
3.86 years. Obviously, the oil price shock was the external cause of frequency 
change in the stock market. 

This may not be the case for the stock market crash in October 1987. There 
was a long swing of frequency during the 1981-1990 period. For FSPCOM and 
FSDXP HP cycles, their characteristic period of 3.28 years lasted for two years 
(1985-86). Then, their characteristic period slightly changed to 3.05 years for 
FSPCOM (January - December 1987) and FSDXP (January - October 1987), and 
2.84 years thereafter. The stock market crash happened at the end of the 10-
month "frequency shift." There was a 2-month delay for FSPCOM after the stock 
market crash. This suggests that the stock market crash is the end of an internal 
bubble instead of external shocks.  

The interesting thing is that the political economy of wars and arm races left a 
much stronger fingerprint in the time-frequency representation. The most 
significant changes of the frequency pattern happened in three periods: US-
Soviet arm and space races during 1958-1962, the escalation of the Vietnam War 
during 1965-1972, and the so-called Reagan revolution in 1980's. Not only fiscal 
and monetary policy, but also industrial policy, tax policy, and military 
program, may have notable impacts on structural changes of US economy.  
 
 
V. Theoretical Implications of Persistent Cycles and Economic Instabilities 
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There is no question that external noise and measurement errors widely exist 
in economic data. The question is whether some regularities are observable from 
an empirical time series. The answer is yes.  

Like a telescope in astronomy or a microscope in biology, time-frequency 
analysis opens a new window of observing evolving economies. The most 
enlightening result in business cycle studies is the discovery of persistent cycles, 
i.e., self-generating cycles from economic aggregates. These cycles are nonlinear 
in nature with remarkable resilience and flexibility like living beings. This 
discovery provides a new perspective to business cycles. Traditionally, the 
economic order is characterized by negative feedback and  equilibrium (steady) 
states. The new role of persistent cycles challenges the linear framework of 
economic dynamics. We need to re-examine the implications of complexity and 
instability in business cycles. 

 
(5.1) Characteristic Frequencies and Endogenous Cycles 

The existence of characteristic frequencies in economic movements has 
profound implications in business cycle theory. 

Economic movements, like organisms, have their distinct time rhythms. 
Different economic factors move with different speeds and different frequencies. 
In this sense, economic aggregates have their "personalities" and they are not all 
alike in frequency patterns. The pattern recognition in economic dynamics will 
pave the way for economic diagnostics and policy valuation.  

Changing patterns of characteristic frequencies of business cycles reveal 
internal sources of economic shocks, such as military expenditures and tax 
policies. Economic interactions are highly correlated and are an essential nature 
of collective phenomena. The impact of monetary shocks and technology shocks 
can be better understood if we know their own dynamics. There is no absolute 
dividing line between internal and external shocks. Nonlinear interaction, rather 
than linear causality, provides a better picture for understanding the historical 
experience of economic evolution. 

We should point out that the popular name of "chaos" is somewhat 
misleading because of its negative image of irregularity and disorder. That is 
why we suggest the term of "complex cycles" for deterministic chaos. We also 
prefer the name of "color chaos" to white noise. Unlike controlled experiments in 
natural science, complex chaotic cycles may not be "verified" in economic 
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dynamics, but can be observed through empirical patterns, such as time-
frequency representation. Like calculus for classical mechanics, Riemann 
geometry for gravitation theory, new mathematical tools, such as nonlinear 
dynamics and nonstationary time series analysis, are critical to the advancement 
of economic dynamics. 

 
(5.2) Time Scale and Observation Reference in Measurement and Theory 

Econometricians often argue that the measurement method of economic 
indicators (such as annually or daily data) demands the discrete-time algorithm 
[Granger and Teräsvirta 1993]. These technical arguments ignore fundamental 
issues of time scale in any dynamical theory [Chen 1993a, b].  

In the history of empirical science, many theoretical controversies can be 
settled by refining measurements. Whether economic laws of motion (if they 
exist) are invariant under changes of time units is a fundamental issue in 
economic dynamics. For example, if econometric tests of long-run economic 
relationship, such as unit roots or linear causality, succeeds for annual or 
quarterly data but fails for monthly data, the validity of underlying economic 
theory would be questionable [Lütkepohl 1991].  

The most visible pattern of economic movements is the recurrent feature of 
business cycles in the time scale of several years.  Regression analysis is more 
comfortable with annual data than monthly data, since serial correlations can be 
easily explained by stochastic models with few lags. However, annual data is 
helpless for spectral analysis. Measurement precision does matter in empirical 
economic studies. If dynamic patterns change with the time scale, such as the 
patterns of the stock market movements during a trading day may differ from 
the patterns during a business cycle, we should change the dynamic model and 
not just the time unit.  

The degree of mathematical complexity is associated with computational 
reliability. Conventional discrete-time ARMA models have poor resolution 
because of the extremely low computational degree of freedom. A better 
resolution of the WGQ spectrogram comes from new representation 
reconstruction in terms of a two-dimensional Gaussian lattice instead of a one-
dimensional polynomial fitting.  

The differencing operator serves a poor reference base in business cycle 
studies. From the view of resource constraints, the DS framework implies 
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unlimited resources in economic dynamics, if level information is not relevant to 
economic dynamics. Most economic variables, including the government 
budget, credit limits, wealth, capital stock, savings, inventory, consumption, and 
production, are measured by levels. Rich patterns in HP cycles indicate that both 
flow and level variables matter in economic dynamics.  

We recommend the HP filter as a better device in trend-cycle decomposition 
because the HP filter produces consistent measurement and historical patterns 
through time-frequency analysis. We may consider HP long cycles as a long-run 
evolving equilibrium and model HP short cycles by strange attractors.  

 
(5.3) Dynamical Instability and Information Ambiguity 

In the history of science, some thought experiments once dramatically shaped 
theoretical thinking in fundamental issues. Notable examples are:  Maxwell's 
demon in thermodynamics, the uncertainty principle in quantum mechanics, and 
the Friedman paradox on the nonexistence of destabilizing patterns in 
speculative dynamics. 

Friedman asserts that no predictable pattern can exist in the market beyond a 
short time horizon because rational arbitrageurs (Friedman's spirits) will rapidly 
wipe out any destabilizing traders from the market  [Friedman 1969]. This is the 
essence of the efficient market hypothesis and the main argument against the 
possible existence of market regularity. Actually, Friedman's spirits behave 
much like Maxwell's demon in equilibrium thermodynamics, although their 
purposes are just the opposite [Chen 1993b, Brillouin 1962]. 

In addition to information costs and financial constraints [Grossman and 
Stiglitz 1980, De Long, Shleifer, Summers, and Waldmann 1990], there are more 
serious barriers for arbitrageurs' action. 

First, the observational reference for economic equilibrium and market 
fundamentals are simply not well-defined operationally. Friedman's argument 
may be valid for an island economy without growth and nonlinear interactions 
among residents, but not valid for an open economy with growth and collective 
actions.  

Second, the problem of information ambiguity is more fundamental than 
information scarcity from the point of view of time-frequency analysis. The 
implications of the information flow can only be understood in terms of a 
historical context, such as the case of linguistic analysis. It is impossible to judge 
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economic trends from uncorrelated shocks. Investment hysteresis in the range of 
two to four years can be understood by the value of waiting under uncertainty 
[Dixit 1992]. The time delay in information analysis and decision making is a 
main source of overshooting and inertia. 

Third, dynamical instability and bounded rationality set fundamental limits 
to economic forecasting. Nonlinearity, nonstationarity, and the uncertainty 
principle in information analysis, all contribute to complexity and indeterminacy 
in economic forecasting [Prigogine 1993, Chen 1993a, b]. Friedman's argument 
implies that irrational speculators are sure losers. This would be true only for 
simple dynamical systems when market movements could be perfectly 
predictable. The extreme cases of complete unpredictability of random walks 
and perfect predictability of harmonic cycles are unrealistic features of linear 
dynamics. The modest behavior of nonlinear oscillators fills in the gap between 
the two extremes.  

In short, rational arbitrageurs on average cannot eliminate cyclic patterns, 
even in the long run. We can forecast general economic trends including their 
mean period and variance, but we cannot predict time path and turning points 
even when we know of some pattern of economic dynamics. There is no sure 
winners or losers on the speculative market because of the complex nature of 
business cycles. 
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VII. Brief Conclusion: Evolving Economy and Complex Dynamics 

Now, we have a better understanding of why business cycles have been well 
documented by the NBER approach, but are hard to characterize by statistical 
analysis based on a stationary process [Zarnowitz 1992]. The existence of 
growing economic trends and structural changes needs new analytical tools for 
nonlinear and nonstationary process. Time-frequency representation and the HP 
trend-cycle decomposition pave the way to study persistent cycles from 
empirical economic data. 

The characteristic frequencies of economic variables provide rich information 
about internal dynamics and structural changes. Our integrated approach in 
empirical analysis and theoretical framework reveals the important role of time 
scale, observation reference and pattern recognition in business cycle studies.  
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