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Abstract 

An empirical and theoretical analysis of financial crises is conducted 

based on statistical mechanics in non-equilibrium physics. The transition 

probability provides a new tool for diagnosing a changing market. Both 

calm and turbulent markets can be described by the birth-death process for 

price movements driven by identical agents. The transition probability in a 

time window can be estimated from stock market indexes. Positive and 

negative feedback trading behaviors can be revealed by the upper and lower 

curves in transition probability. Three dynamic regimes are discovered from 

two time periods including linear, quasi-linear, and nonlinear patterns. There 

is a clear link between liberalization policy and market nonlinearity. 

Numerical estimation of a market turning point is close to the historical 

event of the U.S. 2008 financial crisis.   
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1. Introduction 

How to diagnose the nature of business cycles and financial crises is still an open 

issue in economics and finance [1, 2]. There is serious debate on the nature of 

financial crises. The equilibrium school believes in a self-stabilizing market and 

attributes external shocks as the only source of cycles and crises [3-7], while the 

disequilibrium school mainly considers various mechanisms of market instability 

[8-10]. Current econometric analysis has difficulty in diagnosing crises since its 

analytical foundation is static probability distribution. The equilibrium school 

assumes the Gaussian distribution or i.i.d. with a finite mean and variance [4], while 

the disequilibrium school introduces non-Gaussian distributions, such as the Levy 

distribution, fat tails and power law [7, 11-13]. The disequilibrium approach is 

attractive in empirical analysis but impotent in policy studies, since it has little means 

to prevent external shocks. The third approach is a computational simulation of 

heterogeneous agents [14]. This approach can generate unstable patterns suggested by 

behavioral economics, but is hard to apply in empirical analysis of a financial crisis.  

Our research strategy is to choose a proper degree of abstraction, so that it is 

simple enough to explain key empirical observations but general enough to integrate 

existing theories. We have solid evidence that financial movements are nonlinear and 

non-stationary in nature [2]. Therefore, we develop a general approach in analyzing a 

non-stationary time series, so that the equilibrium, stationary, and linear scenario are 

special cases of non-equilibrium, non-stationary, and nonlinear situations. Historical 

features can be used to test crisis theory [15]. Our breakthrough in diagnosing 

financial crisis is achieved by replacing the static model of the representative agent by 

the time-varying non-Gaussian probability distribution of population dynamics. The 

master equation approach is widely used in statistical mechanics in physics and 
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chemistry, which is called the social dynamics in studies of interacting agents in 

sociology and economics [16-19]. According to this approach, equilibrium analysis 

mainly considers the first (mean value) and second moment (variance), while 

non-equilibrium situations study social behavior with higher moments [20].  

In a recent paper, we show that high moments representation can provide effective 

warning signals of a regime-switch or an upcoming financial crisis [21]. We will 

further demonstrate that the changing patterns in transition probability can diagnose 

the nature and cause of the 2008 financial crisis. Methodologically speaking, the 

time-varying probability distribution is richer than the static feature from the 

representative agents, but simpler than the computational model of heterogeneous 

agents in empirical and theoretical analysis. Time-varying probability distribution can 

be described by non-linear transition probability in a master equation for the 

birth-death process. The transition probability in different historical time windows 

provides valuable information on structural stability of dynamical markets, while the 

high moments representation may provide timely warning of coming crisis. 

The technical issue is how to derive the transition probability from empirical 

observation and economic mechanisms since the Gaussian type distribution in 

equilibrium physics may not be valid for social systems [16, 22]. For example, the 

herd behavior in a social population may generate a bi-modular distribution [23, 24, 

25]. Here, we do not make any ad hoc behavioral assumptions for market dynamics. 

Instead, we take a phenomenological approach to derive the transition probability 

from empirical data. We develop a numerical algorithm to establish a link between the 

master equation and the empirical estimation of transition probability. Herd behavior 

and bi-modular distribution can be explained by logistic interaction in transition 

probability [2, 24].  

We estimate the transition probability in two separate periods: one period, 1950 to 

1980, was dominated by Keynesian policy and New Deal regulation; and the period 

of 1981 to 2010 is the liberalization era started by the Reagan-administration and 
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includes the 2008 crisis. In each period, we assume that the transition probability is 

the function of market states (i.e. current prices), but independent of time. This 

procedure is similar to the two-stage econometric analysis. The difference is attributed 

to different mathematical representations. Econometric analysis is based on a matrix, 

while a probability distribution needs to solve partial differential equations. A more 

advanced mathematical representation may reveal more patterns in complex 

dynamics.  

Through empirical analysis, we introduced a quantitative indicator of population 

behavior: the transition probability between neighboring states of price indexes. We 

discovered the nonlinear shape of transition probability for the period of liberalization 

and crisis, which is rooted in trading behavior. We found a visible link between the 

liberalization policy and the financial crisis. This result is very different from the 

exogenous school [7, 11, 13]. 

Through theoretical modeling, we demonstrate that the birth-death process is the 

proper model in population dynamics, which is capable of explaining all three 

observed features. The birth-death process originated in molecular dynamics in 

physics and has been introduced to describe an up-down process in the stock price 

movement [26-28]. We use the birth-death process as a unified model of linear (calm) 

and nonlinear (turbulent) markets. By means of moment expansion, we estimated the 

condition of the market breakdown, which is remarkably close to the real event. 

Unlike the model of heterogeneous agents, our population model of identical agents 

provides an alternate picture of animal spirits. Mass psychology is visualized by the 

rising and falling market tide that is measured by the net daily change rate. 

Based on these findings, we get a new understanding of old conflicting thoughts. 

The so-called efficient market provides a simplifying linear picture of the calm 

market, whose higher moments are much smaller than the variance. The nonlinear 

turbulent market during the crisis resulted from the rise of high moments when the 

buy and sell pattern is remarkably nonlinear and asymmetric. There is strong evidence 
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of endogenous instability, since the financial market is resilient under repeated cycles 

and crisis, which is characterized by the stable regime of the relative deviations [2, 29, 

30]. Our picture greatly extends the scope of equilibrium models in finance, which 

can be considered as a special case of a calm market in our nonlinear model. 

 

2. Theoretical Models: The Master Equation 

and the Birth-Death Process 

2.1.The Master Equation 

The master equation is widely used in physics, chemistry, biology and finance [18, 

31]. The change of the time-varying probability distribution is generated by the 

transitions from state x′ to state x , minus the transitions from state x  to state x′ . 

The resulting master equation is given by the following partial differential equation:  

 

 ( ) [ ( | ) ( ) ( | ) ( )]P x t dx W x x t P x t W x x t P x t
t
∂ ′ ′ ′ ′, = , , − , , .
∂ ∫  (0) 

 

( )P x t, is the probability distribution function， ( | )W x x t′,  is its transition 

probability, represents the probability for the stochastic variable changing from state 

x′  to x  in time interval of t  to t dt+ . For the stationary case, ( ) 0P x t
t
∂ , =
∂

. 

 

A stochastic process can be defined by equation (0) by introducing a specific 

transition probability.  
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2.2. The Birth and Death Process 

The master equation of the birth-death process in the discrete price space is the 

following: 

 + -
( ) ( 1) ( 1 ) ( 1) ( 1 )

[ ( ) ( )] ( )

P x t W x P x t W x P x t
t

W x W x P x t+ −

∂ , = − − , + + + ,
∂

− + , ,
 (2) 

Where +( ) ( 1| )W x W x x= + ， ( ) ( 1| )W x W x x− = − ， 

The birth-death process Eq. (2) is simpler than the master equation (0) because its 

state space is in discrete form. The unit of price is the minimal accounted change of 

the variable, which is 0.01  point as the unit for a stock index, and 0.01
Y

 for 

log-index lnS Y= .  

Transition probability can be described by a vector projected in a non-orthogonal 

set. Its basis function is { }:nf n∈•  with 0 1f = , 1f x= , and 
1

0

( )
n

n
i

f x i
−

=

= −∏  for 

2n ≥ . Therefore, transition probability W can be expressed by a vector 

0 1( , , )na a aL  in space 0 1( , , )nf f fL . The transition probability can be 

derived from empirical data. We will discuss it in Section 3. 

2.3. The Linear BD Process 

The linear birth-death process, BD Process, is the simplest case of equation (2) 

when the coefficients of transition probability are: 1 0a ≠  and 1| 0i ia ≠ = . If the 

transition probability is linear with an identical birth rate and death rate, the 

birth-death process will converge to a Brownian motion with a detailed balance. 

Under the detailed balance, Cox and Ross [26] derived the Black-Scholes model from 

the birth-death process. 

For the linear birth-death process:  
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 W bx+ = , W dx− =  (3) 

Here, b  is the birth (price-up) rate, and d  is the death (price-down) rate for 

the linear birth-death process.  

Price movements in a growing market can be visualized by the up and down 

dynamics driven by positive feedback (W bx+ = ) and negative feedback (W dx− = ) 

trading strategies. The trend emerges as an aggregate result of mass trading. The 

linear birth-death process produces a linear deterministic trend when 0b d− > .  

 

 
( ) ( )( )

( ) ( )
dE x t

b d E x t
dt

= −  (4) 

 

We introduce a useful measurement of the relative deviation (RD), which is the 

ratio of standard deviation to its mean [2]: 

    when mean>0       (5) 

 

We calculate the RD for two special cases: (a) when its time limit tends to zero. 

(b) when its time limit tends to infinity. Their solutions are: 

 

 
0

lim ( )BDt
b d t

→
Ω = +  (6a) 

 lim BDt

b d
b d→∞

+Ω =
−

 (6b) 

 

From equation (6a) and (6b), we can see that the short-term perspective of the 

linear birth-death process is a diffusion process with an explosive relative deviation, 

while its long-term perspective is convergent to a steady state with a constant relative 

deviation. This result provides a good argument for using the birth-death process, 

which is capable of explaining the observed stable pattern of relative deviations in 
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stock and macro indexes [29, 30]. The proofs of (4) to (6) are given in the Appendix.  

2.4. The Nonlinear Birth-Death Process with High Moment 

Expansion 

In order to study market instability and financial crises, we study a nonlinear 

birth-death process with the 4th power of state x for mathematical simplicity.  

We consider a nonlinear birth-death process; its transition probability has the 

following form: 

 

 0 1 1 2 2 3 3 4 4

0 1 1 2 2 3 3 4 4

W b b f b f b f b f
W d d f d f d f d f

+

−

= + + + +
= + + + +

 (7) 

Where 0 1f = , 1f x= , 2 ( 1)f x x= − , 3 ( 1)( 2)f x x x= − − , and 

4 ( 1)( 2)( 3)f x x x x= − − − .  

Theoretically speaking, this formulation is a phenomenological description of 

nonlinearity up to the third power of x. Intuitively, the f function can be visualized as 

a consecutive trade up to four steps in a time interval by identical traders. We will see 

that the small nonlinearity of the 4th power to x is capable of understanding the 

mathematical condition of a market break-down or crisis. 

It is hard to find an analytic solution with non-linear transition probability. But 

we can explore an approximation solution by means of high moment expansion and 

obtain the Fokker-Plank equation with Poisson Representation [32] for the high 

moments: 
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2 3 4
1 1 2 2 3 3 4 4

2
2 3 4

1 2 2 3 3 4 42

3
2 3 4

2 3 3 4 43

4
3 4

3 4 44

5
4

45

[( ) ( ) ( ) ( ) ] ( )

[ (2 ) (3 2 ) (4 3 ) ] ( )

[ (3 ) (6 3 ) ] ( )

[ (4 ) ] ( )

( )

F b d b d b d b d F t
t

b b d b d b d F t

b b d b d F t

b b d F t

b F t

α α α α α
α

α α α α α
α

α α α α
α

α α α
α

α α
α

∂ ∂= − − + − + − + − ,
∂ ∂

∂+ + − + − + − ,
∂
∂− + − + − ,
∂
∂+ + − ,
∂
∂− ,
∂

 (8) 

  

where F  is no longer a real measure for high order moments. It implies that the 

stationary distribution may not exist. We have showed the dynamics of a nonlinear 

turbulent market when high moments diverge [21]. The theoretical moments would 

diverge at the point of x  when: 

 

 2 3 4
1 1 2 2 3 3 4 4[( ) ( ) ( ) ( ) ] 0,b d x b d x b d x b d x

x
∂ − + − + − + − =
∂      

(9) 

 

since the left side of Equation (9) would appear in the denominator when solving 

Equation (8) using the perturbation method [32]. 

3. Transition Probability Estimated from 

Empirical Data 

3.1. Estimating Transition Probability in Two Periods 

In theory, transition probability is always changing over time. This imposes a 

tremendous difficulty in the empirical analysis of transition probability. In 

econometric analysis, we can divide the available time series into several periods, and 

assume that the structural form is not changing over time within each period. 

Similarly, we may assume that the transition probability in each period is only a 
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function of a price state, not the function of time. We chose 1980 as the dividing 

linesince President Ronald Reagan initiated the liberalization era in market 

deregulation at that time. We wish to observe the structural change between the 

periods of 1950-1980 and 1981-2010. 

In empirical analysis, the data frequency restricts the resolution of trading 

behavior. Given the frequency of data set { }| [0, )tx t∈ +∞  (length of tΔ  between 

two successive point 1tx +  and tx ), only the net aggregate result of all trades during 

tΔ  accounts for the transition probability. For example, if we use the daily data, the 

balanced buyer-initiated and seller-initiated trades within any interval during the day 

have no influence on the moments calculated on a daily basis.  

Assume that the transition probability doesn’t vary within the specific period. If 

there areN samples at a given value 0x , among which n+  samples move up by the 

average jump magnitude x+Δ  and n−  samples move down by the average jump 

magnitude x−Δ  in the next day, the transition probabilities at 0x  are 

0 0( 1| ) nW x x x
N
+

++ = Δ , and 0 0( 1| ) nW x x x
N
−

−− = Δ  

Therefore, n
N
+  and n

N
−  is the probability of moving up and down, x+Δ  and 

x−Δ  are the respective numbers of “standard” trades. We calculated the transition 

probability from the S&P 500 daily index. Their pattern for the period of 1981-1996 

and for the period of 1997-2010 is shown in Fig. 1 and Fig. 2 respectively. 
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FIG.1. The transition probabilities (W+and W−− ) of the S&P 500 daily 

closein1950-1980. The horizontal axis is the price level of the S&P 500 

daily index. The main curves of W+ and W−−  (except the segments 

between 110 to 140 points) are not far from linear (the straight linear 

fitting lines).In fitting the transition probability, the tops (higher than 110) 

of several waves were taken out because of too few data points available at 

that range. 

 

Here, the diverging curves are caused by growing trend of stock index. The 

upper curve can be explained by the “strength” with positive trading strategy, 

and the lower curve the strength with negative trading strategy. Intuitively, net 

price movements are resulted from the constant battles between the “Bull 

camp” and the “Bear camp”. 
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FIG.2. In 1981-2010, the transition probabilities (W+and W−− ) of the 

S&P 500 index are marked by two curves, which are highly non-linear 

with two visible humps or dips. The two straight lines here are the 

extensions of the straight fitting lines in FIG 1. 

 

Comparing FIG.1 with FIG.2 we havethreeobservations: 

First, the transition probability has two curves: both curves are not straight lines. 

It is a clear feature of nonlinear dynamics in the birth-death process. The upper curve 

indicates a price-up magnitude driven by positive feedback and the lowercurve 

indicates a price-down magnitude driven by negative feedback in market trading. 

The observed behavior is more complex than the noise trader model [10]. 

Second, the upper and lower curves are not symmetric, since there is a growth 

trend in the market index time series.  

Third, there is remarkable difference between the two periods. For period I, 

1980-1996 without severe crisis, the two transition probability curves are more or 

less balanced with only gradual changes. For period II, 1997-2010 with the 2008 

crisis, the transition probability curves have visible humps in the upper curve and 

dips in the lower curve.  
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Fourth, we may define three dynamic regimes based on the different patterns 

from transition probability. The artificial linear lines represent the ideal image of the 

so-called efficient market. The quasi-linear pattern of transition probability in FIG. 1 

describes a (stable)calm market without a crash or crisis. The nonlinear pattern in 

FIG. 2 implies an (unstable)turbulent market with a crash and crisis. Both the terms 

“calm” and “turbulent” markets are used to characterize social psychology in 

behavioral finance. 

The observable patterns in FIG. 1 and FIG 2 can be shown by standard regression 

analysis. In FIG.1, linear model can explain over 96% of the curves, which are 96.5% 

( 2 0.9649R = ) for the positive transition probability (the upper curve, 

0.002482 0.02513W x+ = + ) and 98% ( 2 0.9828R = ) for the negative transition 

probability (the lower curve, -0.002788 0.01151W x−− = + ). In FIG. 2, linear 

regression can only explain 65% of the positive transition probability ( 2 0.6511R = ) 

for the positive upper curve ( 0.004038 0.3019W x+ = + ), and 86% ( 2 0.8573R = ) for 

the negative transition probability ( -0.004694 0.5010W x−− = + ). In FIG. 1, the linear 

regression coefficients are much smaller than which in FIG. 2. This implies that the 

variance of daily percentage index changes has grown larger since 1981. During 

1997-2010, linear regression can only explain 20% ( 2 0.1953R = ) of the positive 

transition probability, and 7% ( 2 0.073R = ) of the negative transition probability. 

Nonlinearity represents main segments of the transition probability curves.  

Similarly, the transition probability of Dow-Jones Industrial index (DJI) shows 

stronger non-linearity since 1981, which is shown in FIG. 3.  
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FIG.3. The transition probabilities (W+and W−− ) of the DJI(Dow Jones 

Industrial) index daily closein1950-1980 [figure (a)] and 1981-2010 

[figure (b)]. The horizontal axis is the price level of the DJI daily index. In 

figure (a) the main curves of W+and W−−   are not far from linear (the 

straight linear fitting lines). In fitting the transition probability in (a), the 

tops (higher than 950) of several waves were taken out because of too few 

data points available at that range. In 1981-2010 [figure (b)], the transition 

probabilities (W+and W−− ) of the DJI index are marked by two curves, 

which are highly non-linear. The two straight lines in figure (b) are the 

extensions of the straight fitting lines in figure (a). 

In FIG. 3(a), linear fitting can explain over 85% of the curves, which are 86% 

( 2 0.8578R = ) for the positive transition probability (the upper curve, 
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0.002986 0.04683W x+ = + ) and 95% ( 2 0.9471R = ) for the negative transition 

probability (the lower curve, -0.003214 0.2851W x−− = + ). In FIG. 3(b), linear 

regression can only explain 65% of the positive transition probability ( 2 0.6534R = ) 

for the positive upper curve ( 0.004088 1.176W x+ = + ), and 82% ( 2 0.8241R = ) for 

the negative transition probability ( -0.004326 3.739W x−− = + ).During 1997-2010, 

linear regression can only explain 34% ( 2 0.3429R = ) of the DJI positive transition 

probability, and 0.5% ( 2 0.0045R = ) of the negative transition probability.  

We can see the behavior changes that occurred within some price ranges. The 

polarized pattern appears in public opinion on future market trends [24]. The 

psychological source of the market instability was characterized as “animal spirits” 

[33, 34]. 

 

3.2. Estimating Transition Probability Coefficients 

The following simplified equations are used to calculate the transition probability 

from ( )Y t  to estimate the coefficients of W+  and W−  

  

 
2 3 4

0 1 2 3 4
2 3 4

0 1 2 3 4

W b bY b Y bY b Y
W d d Y d Y d Y d Y

+

−

= + + + +

= + + + +
 (10) 

  

The coefficients of W+  and W−  from the S&P 500 index during 1997-2010 is 

shown in Table 1. 
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Table 1. The coefficient of transition probability of the S&P 500 Index 

(original daily close) for the period of 1997-2010 

The polynomial fit coefficient 2R  

0 101.4b = −  1 0.5011b =  4
2 8.032 10b −= − ×  7

3=5.368 10b −×  10
4= 1.284 10b −− ×  0.9517 

0 625.9d = −  1 2.277d =  3
2 3.023 10d −= − ×  6

3=1.749 10d −×  10
4 3.725 10d −= − ×  0.9432 

 

In Table 1, the period of 1997-2010 was chosen for mathematical simplicity of curve 

fitting. We will show the transition probability faithfully recorded in the recent 

subprime crisis in the next section. 

 

3.3. Estimating the Condition of Market Break-Down 

We refer to the market as turbulent when equation (9) is valid and the probability 

distribution no longer exists. This situation is similar to critical fluctuation in 

statistical physics [32].  

Under this situation, we have four implications: First, all statistic variables 

become meaningless. Second, the market trend collapses. In other words, market 

expectations have no consensus, only panic rules the market. Third, the condition (8) 

reveals the possibility of market breakdowns. Fourth, the crisis region is beyond the 

scope of the nonlinear birth-death process. We need a more advanced tool to describe 

the dynamic process in an unstable turbulent market. This knowledge is absent in 

linear models of finance theory. 

The nonlinear pattern of transition probability reveals the dynamic trend of 

population dynamics. Since we know the coefficients of transition probability, we 

could estimate the location of the market crisis. If the positive coefficients represent 

the degree of positive feedback and the negative coefficients the degree of negative 
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feedback, the difference between positive and negative feedback measures the net 

movement within a day, we refer to it as the net daily change rate. 

Keynes and behavioral economists pointed out the role of mass psychology [33, 

35]. We can visualize the market tide driven by collective psychology as a curve. Its 

falling segment represents a market tide towards equilibrium while a rising segment 

signals a market tide towards disequilibrium. FIG. 4 shows the numerical results of 

the net daily change rate, which indicates down – up – down market tides. The up 

phase describes a collective fad for a market bubble. We assume that the turning point 

from the up to the down phase may generate a market breakdown or crisis, and 

therefore a critical point of financial crises. The critical behaviors of crises have also 

been characterized by high moments diverges and extraordinarily large trading 

volumes [21, 36, 37]. 

 

 
FIG 4. The curve of a changing market tide in terms of the net daily 

change rate (1997-2010). The curve is calculated from the 4th degree 

polynomial fitted transition probability from 1997-2010. The up segment 

indicates two hot-speculation periods from 950 to 1229 in 1997-2000 and 

2003-2008, and panic in 2008. The vertical line marks the turning (critical) 

point in market psychology, which is 1229 in the price level. 
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From FIG 4, the turning point can be estimated from the numerical solution of 

the nonlinear birth-death process. We have a quantitative evidence to infer that the 

stock market break-down may happen near the 1229-th point. According to historical 

data, the S&P 500 index closed at 1209.13 on 25-Sep-2008, when the Office of Thrift 

Supervision (OTS) seized Washington Mutual, and sold its banking assets to JP 

Morgan Chase for $1.9 billion. This event was the peak from a chain events 

preceding the 2008 financial crisis. Before this event, Fannie Mae and Freddie Mac 

were nationalized by the U.S. government, Lehman Brothers bankrupted, AIG 

encountered a liquidity crisis. Then, the stock market went to panic since 

26-Sep-2008. Effectively, our estimation of historical turning point provides an 

accurate indicator for coming crisis in addition to high moments approach in crisis 

warning [21]. 

Certainly, transition probability can only be estimated ex post. In practice, the 

rising tide signals an upcoming bubble in the financial market. This is a valuable 

indicator for an early warning of a crisis. 

For empirical observation, an unstable turbulent market can be observed from 

high frequency data with a sudden rise of trading volume or even a market frozen in a 

period of hours or days. But a turbulent market may not exist long when government 

intervention calms the market in a modern economy. Our approach is capable of 

identifying the period of market turbulence, which creates the space for government 

interference. 

4.  Conclusion 

There is a widely perceived image that neoclassical economics imitates 

equilibrium physics [38]. This is partially true in a philosophical paradigm because 

both of them belong to the equilibrium school of theoretical thinking, but not true in 

the mathematical formulation for empirical analysis. For example, the Brownian 
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motion model in physics is molecule dynamics with many particles, but option 

pricing based on geometric Brownian motion is a representative agent model with 

only one particle [39, 40]. Statistical mechanics starts with infinite moments with 

time-varying distribution probability, but econometric analysis is based on the i.i.d. 

model with a finite mean and variance. Most scientists agree that economic 

phenomena are more complex than physics and chemistry. Strangely, economic 

models are much simpler than models in physics and chemistry. Paul Krugman, the 

2008 Nobel Laureate in economics, recently wrote a provocative article in the New 

York Times, titled “How Economists Got It So Wrong?” His answer was “mistaken 

beauty for truth” [41]. However, there are no scientific criteria to assert that linear 

models are prettier than nonlinear ones [42]. The fundamental issue here is not in the 

mathematical beauty but the empirical relevance of economic theory. We know that 

existing linear models are not capable of explaining market turbulence and financial 

crisis. To paraphrase Krugman, we demonstrate that equilibrium models in finance 

are “mistaken simplicity for complexity” by ignoring nonlinear dynamics, high 

moment deviations, time-varying distribution, and social interactions. Our progress 

was made by integrating these complex factors into properly formulated economic 

dynamics. Our inspiration came from Einstein, when he discovered that 

non-Euclidean geometry was more relevant for general relativity than Euclidean 

geometry.  A general framework with more advanced mathematical representations 

is needed to solve old controversies in economics.  

In this article, we show that the master equation approach developed in statistical 

mechanics can be applied to study macro and financial dynamics [16], if transition 

probability can be extended from a Gaussian distribution to a logistic-type nonlinear 

function [24, 29]. We found that the time-varying probability distribution and the 

birth-death process are useful in diagnosing the nature of business cycles and 

financial crisis. 

From empirical transition probability, we found that both negative-feedback and 



20 
 

positive-feedback trading behavior coexists in transition probability. This picture is 

different from equilibrium economics and behavioral finance, since the former only 

considers the stabilizing role of negative feedback and the latter emphasizes the 

destabilizing role of positive feedback. The empirical patterns of transition 

probability reveal two additional dynamic regimes in addition to the linear regime in 

price dynamics: the quasi equilibrium process (calm market) when positive and 

negative transition curves are smooth and near symmetric; the disequilibrium process 

(turbulent market) when its positive and negative transition curves are S-shaped and 

significantly asymmetric. Using two-period analysis of empirical data, we found a 

clear link between liberalization policy and financial crisis. Its policy implication is 

very different from the exogenous models, such as power law, fat tails, and the Black 

Swan theory.  

The birth-death process is simple enough to explain the origin of a viable market 

with persistent fluctuations even during a crisis period: the stable pattern of the 

long-term relative deviation is an inherent nature of the population model. The 

nonlinear birth-death process is a general framework that integrates the linear calm 

market regime in the equilibrium school and the nonlinear turbulent market regime in 

the disequilibrium school. Its nonlinear pattern of transition probability demonstrates 

the nonlinear nature of endogenous instability in business cycles. Its theoretical power 

is demonstrated by the fact that our numerical estimation of the critical point is close 

to the historical event during the U.S. 2008 financial crisis. The spontaneous regime 

switch and critical point was also observed from the real time simulations of the 

endogenous noise model of population dynamics [43]. 

Philosophically speaking, the so-called efficient market in finance literature is 

essentially a simplified linear model of the calm market, which has three observable 

features: First, the growth trend from stock market indexes can be ignored in the 

short-term perspective in financial econometrics. Second, the higher moments are 

quite small in comparison with the variance. Therefore, price movements can be 
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considered as a diffusion process with a Gaussian distribution or i.i.d. Third, the 

diffusion process is a special case of the linear birth-death process with a short-term 

perspective, whose relative deviation is explosive. It implies that the diffusion process, 

i.e. in the form of the pattern of the stable relative deviation [2, 29, 30, 44]. However, 

the noise trader, the random walk model or the geometric Brownian motion is not 

capable of describing a “viable market” with an observed model in behavioral finance.  

The model with two discrete periods when a positive feedback and negative feedback 

trading strategy is essentially a stepping-stone for our nonlinear model [10]. These 

two trading strategies can be considered as special cases in our nonlinear birth-death 

process. 

The policy implications from our analysis are self-evident. Market bubbles and 

financial crisis occurred in the period of 1981-2010, which reveals the possible link 

between the liberalization policy started by President Reagan and the 2008 financial 

crisis. Clearly, the price level alone is not enough to gauge market sentiment. 

Regulating market leverage in trading would be more effective in preventing a 

possible crisis. 

Methodologically speaking, the population dynamics of the birth-death process 

provides a useful framework for studying complex financial dynamics including calm 

and turbulent markets as well as market resilience after a crisis. Compared to existing 

approaches in parametric econometrics and computational simulations based on 

heterogeneous agents, transition probability provides an effective approach both in the 

empirical analysis and theoretical understanding of market instability and financial 

crisis. Our population model of identical agents provides a simpler explanation of 

market bubbles than the heterogeneous agent model. Nonlinearity and population 

behavior play key roles in the genesis of a financial crisis, which is beyond the scope 

of linear dynamics and representative agent models. We are developing a general 

model of option pricing based on the master equation and birth-death process. We will 

address this issue elsewhere. 
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APPENDIX: THE RELATIVE DEVIATION OF THE LINEAR 

BIRTH-DEATH PROCESS 

A linear birth-death process can be simply approximated by a deterministic process 

( )( )E x t  plus a stochastic process z  [45]. The deterministic trend is 

 ( ) [ ( )] [ ( )]dE x W E x W E x
dt + −= −

 
(A1) 

and the Fokker-Plank equation for variance is 

 
2

2

( ) ( [ ( )] [ ( )]) ( )

1 ( [ ( )] [ ( )]) ( )
2

P z t W E x W E x zP z t
t z

W E x W E x P z t
z

+ −

+ −

∂ , ∂′ ′= − − ,
∂ ∂

∂+ + , .
∂

 (A2) 

  

Where 

{ }0
( ) ( ) ( [ ( ( ))] [ ( ( ))])exp 2 ( [ ( ( ))] [ ( ( ))])

t t

t
z t z t dt W E x t W E x t W E x s W E x s ds+ − + −′

′ ′′ ′ ′, = + −∫ ∫  

is the variance of tx . Hence the volatility 2
tσ  has a value evolves with the 

expectation ( ( ))E x t  

 2 ( )( ( )) 1b d t
t
b d E x t e
b d

σ −+ ⎡ ⎤= −⎣ ⎦−  (A3)
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Where we set ( (0)) 1E x = , b  is a linear [ ( )]W E x+ , d  is a linear [ ( )]W E x− , b d> . 

Then the RD of linear BD process is ( )1 b d t
BD

b d e
b d

− −+ ⎡ ⎤Ω = −⎣ ⎦−
, which has three 

special cases: 

 

. 

 
0

lim ,

lim ( ) ,

lim ( ) .

BDt

BDt

BDb d

b d
b d
b d t

b d t

→∞

→

→

+Ω =
−

Ω = +

Ω = +

 (A4) 

 

Note that here BDΩ  is the RD for ( )Y t . For logarithmic series S , 
0

lim ( )BDt
S

→
Ω  and 

lim ( )BDb d
S

→
Ω  are also growing with t . And if 0( ) |BD tYΩ ?  is stable, empirical 

0( ) |BD tSΩ ? is stable with only a slight decrease (the proof of the similarity of 

( )BD YΩ  and ( )BD SΩ  will be published elsewhere). Therefore, the linear 

Birth-death process can describe the stable RD in both original and logarithmic 

economic indexes. 
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