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Zeroth Law of Thermodynamics and Transitivity of 
Simultaneity 
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The transitivity of thermal equilibrium is equivalent to the transitivity of clock 
rate synchronization. The condition of clock rate synchronization in general 
relativity is shown, which is weaker than time-orthogonality. 

1. INTRODUCTION 

There are two important laws of transitivity in physics (Zhao, 1991). 
One is the zeroth law of thermodynamics, which states the transitivity of 
thermal equilibrium. The other is the law of the transitivity of simultaneity 
in general relativity (Landau and Lifshitz, 1975), which says that one can 
synchronize coordinate clocks placed along a closed path to a simultaneous 
moment if and only if the reference frame is time-orthogonal. 

In this paper, we will give a fundamental and intrinsic relationship 
between the two laws on transitivity in physics. The transitivity of thermal 
equilibrium is equivalent to the transitivity of clock rate synchronization. 

In Section 2 we show the relationship between the transitivity of thermal 
equilibrium and the transitivity of clock rate synchronization by means of 
the thermal Green function. In Section 3 we discuss "clock synchronization" 
and "clock rate synchronization" in general relativity, and give a condition 
on "clock rate synchronization" which is different from that given by Landau 
and Lifshitz. We present a conclusion and discussion in Section 4. 

2. THERMAL GREEN FUNCTION AND THERMAL 
EQUILIBRIUM TRANSITIVITY 

The question is how to establish a link between time and temperature. 
One approach is through the thermal Green function in quantum field theory, 
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Fig. 1. Three systems with adiabatic partitions. Each has a 
standard clock to measure its proper time. 

where temperature appears as a pure imaginary time period in the thermal 
green function (Gibbons and Perry, 1978). 

Let us consider the simple case of the spin-0 Bose-Einstein ideal gas. 
Three adjacent macroscopically infinitesimal systems A, B, and C are located 
in a 4-dimensional Riemann spacetime (see Fig. 1). Each system has a 
standard clock. Adiabatic partitions are used to separate the three systems. 
When the three systems are in their respective thermal equilibrium, their 
thermal Green's functions are given as (Hattie and Hawking, 1976; Gibbons 
and Perry, 1978) 

Ga(ATa) = Ga(AT a q- i[~p~) 

Gb(A'rb) = Gb(ATb + i~pb) (1) 

Gc(A'rc) = Go(Arc + i[3,c) 

where %. %. and r~ are proper times indicated by the standard clocks A. B. 
and C. respectively, and 

T. = 1/[3p (2) 

is the proper temperature, and [3. is the imaginary time period corresponding 
to proper time "r. 

However, proper variables are local quantities that are applicable only 
to local measurements. We need global coordinate quantities to represent 
physical laws in the whole curved spacetime. It is known that the proper 
quantities are related to their corresponding coordinate quantities by a redshift 
factor. Hence, the above thermal Green functions can be expressed by coordi- 
nate quantities 

Ga(Ata) = Ga(Ata Jr i~a ) 

Gb(Atb) = Gb(Atb + i~b) (3) 

Gc(Ato) = Gr + i[3c) 
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We have 

At = A"r/- . . / -~ (4) 

r =  r . .  (5) 

[3 = [ 3 , / - . / - ~  ( 6 )  

where t is coordinate time, Tis coordinate temperature, and [3 is the imaginary 
time period corresponding to coordinate time t (Einstein, 1955; Birrell and 
Davis, 1982). 

Consider the transitive property of thermal equilibrium among the sys- 
tems A, B, and C. The thermal equilibrium between two systems in Riemann 
spacetime means that they have the same coordinate temperature, while their 
proper temperatures are different in most cases. If the system A is in thermal 
equilibrium with B, we have 

[3a = ( l / T a ) ~ a  = [3b = ( l l T b ) ~ b  (7) 

We note that [3 in the thermal Green function depends on two factors. T is 
a thermal characteristic of the equilibrium state; in fact, T is the temperature 
magnitude. ~ is the unit scale of imaginary time. Because i 2 = - 1 ,  the 
absolute value of the unit of imaginary time is equal to that of real time. So 

is also the rate of the coordinate clock. 
In the nonrelativistic case, we can assume that the clock rates are the 

same everywhere, or the unit magnitude of time is the same in whole space. 
In special relativity, we can always synchronize clocks placed at different 
space points. Their clock rates (the unit magnitude of time) can be adjusted 
to the same rate by means of the invariance of the light velocity and spacetime 
homogeneity and isotropy. In these two cases, [3 in the thermal Green function 
only depends on the thermal characteristic of the equilibrium state. And one 
must get [3a = [3b if system A is in thermal equilibrium with B. 

The problem of clock rate synchronization is more complicated in a 
curved spacetime. Generally speaking, the rates of standard clocks at rest at 
different space points are different. Further, the rates of coordinate clocks 
can be synchronized only in some cases. This means that we cannot identify 
the unit magnitude of coordinate time at different space points in most cases. 

Hence, equation (7) may not be valid if we only know that system A is 
in thermal equilibrium with B, but we do not know if the rates of clocks are 
synchronized or not. 

It is known that the "coordinate temperature" is an indicator for a thermal 
equilibrium state in curved spacetime. If thermal equilibrium is transitive in 
spacetime, then the coordinate temperature must be the same for all the parts 
in the system, or equation (7) must be valid. So we are sure that rate of clock 
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A has not been synchronized with clock B if equation (7) is still not valid 
although system A is in thermal equilibrium with B. 

Now we discuss the relationship between the transitive property of 
thermal equilibrium and the transitive property of "clock rate synchroniza- 
tion." First, we assume that system A is in thermal equilibrium with B when 
we take away the adiabatic partition between A and B (but retain the rigid 
diathermic partition). The thermal Green functions for systems A and B are 

Ga(Ata) = Ga(Ata q- i~a) 

Gb(Atb) = Gb(Atb + i~b) (8) 

where ta and to are coordinate times, and ~a and 13b are imaginary time periods 
corresponding to ta and tb respectively. If ~a :fz ~b, we can change the rate 
of coordinate clock B to make sure that 

~b = ~a (9) 

Therefore, the rate of clock B is the same as A at present. It follows that 
their unit times ~a and S0 satisfy 

~b = ~a (10) 

Second, we assume that system B is also in thermal equilibrium with C and 
their thermal Green functions do not change after taking away the adiabatic 
partition between them (but retain the rigid diathermic partition) 

Gb(Atb) = Gb(Atb + ig3b) 

Go(Ate) = Gc(Atr + i~c) (11) 

Similarly, we can change the rate of coordinate clock C to achieve 

[~c = [3~ (12) 

Therefore, the rates of the two clocks are the same 

~ = ~b (13) 

If thermal equilibrium is transitive, system A should be in thermal 
equilibrium with C. [3pr and [3pa should not vary after taking away the adiabatic 
partition between systems A and C (retaining the rigid diathermic partition). 
Ga and Gc do not change, nor do [3~ and ~c. From equations (9) and (12), 
we know that 

~a = 13c (14) 

SO 

~a = ~ (15) 
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It should be noted that 8, is obtained by synchronizing the rates of coordinate 
clocks C and A (i.e., from [3a = [3c). So 8" is different from 8c in equation 
(13), where 8c is obtained by synchronizing the rates of coordinate clocks 
C and B (i.e., from [3c = [3b). From equations (10) and (13), we know that 

8 a = 8b = 8 c (16) 

s o  

8c = 8" (17) 

We come to the conclusion that the transitive property of thermal equilib- 
rium leads to the transitive property of synchronization of rates of coordi- 
nate clocks. 

If thermal equilibrium is not transitive (i.e., the zeroth law is violated), 
system A is not in thermal equilibrium with C, although system A is in 
thermal equilibrium with B, and B is also in thermal equilibrium with C. We 
insert adiabatic partitions back between systems A and B, as well as between 
B and C, then take away the adiabatic partition between systems A and C 
(retaining the rigid diathermic partitions). Now, systems A and C will relax 
to a new thermal equilibrium state. Their thermal Green functions will change. 
It is convenient to assume that the heat capacity of system A is much larger 
than that of C. So, [3c will change to [3", but the change of [3a can be neglected. 
We have 

Gc(Atc) = Gc(atc + i[3") 

Ga(Ala) = Ga(At  a + i[3a) ( 1 8 )  

Evidently, 

In order to change [33" to 

~ ~ [30 = [3a (19) 

[3c = [3a (20) 

we have to adjust the rate of the coordinate clock C to enable [3~ to change 
to [~c. The new rate of the clock C is 

8c :# 8c (21) 

It should be noticed that the new rate 8c comes from synchronization with 
clock A, but the old rate 8~, comes from synchronization with clock B. Equation 
(2 l) tells us that synchronization of rates of coordinate clocks is not transitive 
when thermal equilibrium is not transitive. 
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Thus, the transitive property of thermal equilibrium is a necessary and 
sufficient condition for the transitive property of the synchronization of rates 
of coordinate clocks. 

3. C L O C K  SYNCHRONIZATION IN GENERAL RELATIVITY 

Landau and Lifshitz (1975) indicate that the simultaneity of the space 
point A with B in a curved spacetime can be described by the time difference 
of their coordinate clocks: 

A t  = ta - -  tb = - ( g o i / g o o )  d x  i (i = 1, 2, 3) (22) 

In general, At is not an exact differential 

~At v~ 0 (23) 

Therefore, one can synchronize coordinate clocks placed along a closed path 
at a simultaneous moment if we have 

g o i  = 0 (24) 

o r  

~;At = 0 (25) 

So Landau and Lifshitz show that simultaneity is transitive if and only if a 
spacetime is time-orthogonal. In other words, one will not have simultaneity 
surfaces unless the coordinate system is time-orthogonal. 

However, condition (24) is too strong for our question. We do not need 
to synchronize simultaneous moments of coordinate clocks. It is enough to 
have the "synchronization of clock rate" for the study of the relationship 
between time and thermal equilibrium. Now, let us give the condition on the 
transitivity of clock rate synchronization. 

At the first simultaneous moment of the space points A and B, the time 
difference of their coordinate clocks is 

A t l  = ta l  - -  t61 = - - ( g o i / g O 0 ) l  d x  i (26) 

At the second simultaneous moment, the time difference is 

A t 2  = ta2 - -  tb2 : - - ( g o i / g o 0 ) 2  d x  i (27) 

The difference between the rates of the two clocks can be obtained as 

8(At) = ( A t a )  - (Atb) = ( ta2  - -  t a l )  - -  ( t b  2 - -  t e l )  

= (taz - tb2) --  (tal  - -  tbO (28) 

= - -  [ ( g o i / g o 0 ) 2  - -  ( g o i / g O 0 ) l ]  d x  i 
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Therefore, the rates of the coordinate clocks are the same everywhere, or the 
synchronization of clock rates is transitive, if and only if (goi/goo) is indepen- 
dent of the coordinate time t, 

O(goi/goo)/Ot = 0 (29) 

or  

~(At) = 0 (30) 

This condition is weaker than the time-orthogonality. Obviously, equation (29) 
is only a necessary condition, but not a sufficient condition for constructing 
simultaneity surfaces. 

4. CONCLUSION AND DISCUSSION 

There exists a fundamental and intrinsic relationship between thermal 
equilibrium transitivity and clock rate synchronization. The condition of clock 
rate synchronization in general relativity as given by us is weaker than the 
time-orthogonality necessary to establish a simultaneity surface. 

We find that the time properties in general relativity are closely related 
to the laws of thermodynamics. 

The zeroth law of thermal equilibrium transitivity is equivalent to the 
clock rate synchronization in curved spacetime, as can be shown by means 
of the thermal Green function. The first law of thermodynamics, i.e., the law 
of conservation of energy, implies time homogeneity. The second law of 
thermodynamics indicates a time arrow for a large system. In another paper, 
we will point out that the problem of singularity in general relativity may 
be interpreted by the third law of thermodynamics. Time in general relativity 
has neither a "beginning" nor an "end" according to the third law of 
thermodynamics. 
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