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Searching for Economic Chaos:
A Challenge to Econometric
Practice and Nonlinear Tests

PING CHEN

Chaos research has attracted wide interest in the scientific community. Convincing
empirical evidence for it has been found in fluid dynamics (Brandstater and Swin-
ney, 1987), chemistry (Argoul et al., 1987}, and biology {Guevara, Glass, and Shrier,
1981). Relatively less convincing reports come from epidemiology. population dy-
namics, meteorology, and astronomy (Pool. 1989). Evidence for it in economic data
has been published in my own work with Bamett (Chen, 1987b, 1988ab; Bar-
nett and Chen, 1987, 1988) and in others including Brock and Sayers (1988) and
Scheinkman and LeBaron (1989). This work is still controversial.

Empirical studies of economic chaos began in mid-1980 (Chen, 1984, 1987b;
Sayers, 1985; Brock, 1986; Bamnett and Chen, 1987, 1988). Nonlinearity (Ashly.
Patterson, and Hinich, 1986; Brock and Sayers, |988; Scheinkman and LeBaron,
1989), nonnormality (Ashly, Pattern, and Hinich, 1986}, and nonindependence
(Brock, Dechart, and Scheinkman, 1987; Hsieh 1989) in economic time series
is widely discovered. Negative or “mixed” findings are also reported {Sayers,
1985,198%; Brock and Sayers, 1988; Frank and Stengos. 1988; Frank, Gencay, and
Stengos, 1988). Little evidence of chaos is found in monetary indexes (Chen, 1987b,
1988a,b). daily stock returns (Chen, 1984; Scheinkman and LeBaron, 1989), and
laboratory simulations (Sterman, Mosekilde, and Larsen, 1989). There is a fierce
debate about the empirical findings of economic chaos (Chen, 1988b; Brock and
Sayers, 1988; Ramsey, Sayers, and Rothman, 1990}

In this chapter I will first introduce some of the techniques for distinguishing
between randomly generated data and data generated by deterministic processes.
I then analyze pitfalls in statistical tests designed to detect chaos. My work on
mOonetary aggregates Serves as an example to discuss the problem of inference with

economic time series and to illustrate the usefulness of the continuous time model.

This model is just sufficient to generate behavior that closely resembles the data.
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Distinguishing between Deterministic and Stochastic Processes

There are at least four possible candidates for describing fluctuating time series:
linear stochastic processes, discrete deterministic chaos, continuous deterministic
chaos, and nonlinear deterministic chaos plus noise. Testing and modeling the last
one are only in its infancy, because a high level of noise will easily destroy the
subtle signal of deterministic chaos. | discuss the first three candidates here and give
numerical examples of white noise and deterministic chaos as the background for
further discussions. They include the linear autoregressive AR(2) model, the discrete
time logistic model, which is widely used in population studies and economics, and
the continuous-time spiral chaos or Rossler model (1976).

Sample time sequences of these models are shown in Figure 15.1. They all ex-
hibit irregular economic fluctuations very much like economic data when appropri-
ate scales are used. However, a closer examination reveals differences among them,

How can we distinguish between such different theoretical specifications? Can
we tell if a given economic time series is generated by one of them? These are the
basic questions we shall discuss. Four main tools are available, the “phase portrait,”
the autocorrelation function, the Lyapunoy exponent, and the fractal dimension, I
shall describe them briefly in tumn,

Phase Space and Phase Portrait

From a given time series X (1), an m-dimensional vector Vim, T) in phase space
can be constructed by the m-history with time delay T : Vim, T) = {X(1), X(1 +
Ty X[t+(m— 1371}, where m is the embedding dimension of phase space (Tak-
ens, 1981). This is a powerful tool in developing numerical algorithms of nonlinear
dynamics, since it is much easier 1o observe only one variable than to analyze a
complex multidimensional system.

The phase portrait in two-dimensional phase space X(r + T') versus X (r) gives a
clear picture of the underlying dynamics of a time series. Figure 15.2 displays the
phase portrait of the three models using the sample data of Figure 15.1. The nearly
uniform cloud of points in Figure 15.2a closely resembles the phase portrait of
random noise (with infinite degree of freedom). The curved image in Figure 15.2b is
characteristic of the one-dimensional unimodal discrete chaos. The spirul pattern in
Figure 13.2¢ is typical of a strange attractor whose dimensionality is not an integer.
Its wandering orbit differs from periodic cycles,

Long-Term Autocorrelations

The autocorrelation function is another usetul concept in analyzing time series. The
autocorrelation function AC(T) is defined by
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time, can he determined by the first zero point of autocorrelation funclion.

AC() = AC( — £) = cov[X(r), X(O)]/EL(X () — M)?] (15.

where M is the mean of X(¢) and cov [X(¢'), X{1)] is the covariance between X(J
and X(r). The autocorrelation function of stochastic processes, such as an AR(
process, decays quickly to irregular oscillations (Figure 15.3a). The autocorrelatio
of discrete time chaos, such as the logistic model, look like that of random nois
(Figure 15.3b). In contrast, the autocorrelation function of continuous-time chac
such as that of the Rossler attractor, shows wave-like oscillations with smooth dec:

(Figure 15.3c).

The Numerical Maximum Lyapunov Exponent

Chaotic motion is sensitive to initial conditions. This sensitivity is measured by {
. Lyapunov exponents, Consider a very small ball with radius =;(0) at time t = 0 in
(e} . : phase space. The length of the ith principal axis of the ellipsoid evolved from t
) ball at time 1 is £;(t). The spectrum of Lyapunov exponents A; from an initial poi

Figure 15.2 Comparison of the FhESEpnlﬂaltsol' model solutions. N = 1000, (2) AR} can be obtained theoretically by (Farmer, 1982).

; mffdwm T'=20. (b) Logistic chaos with T=1. (c) Rossler model with T =1 and
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The maximum Lyapunov exponent A (the largest among A;) can be calculated nu-
merically by the Wolf algorithm (Wolf et al., 1985). Its limiting procedure is ap-
proximated by an averaging process over the evolution time EVOLV. This algorithm
is applicable when the noise level is small. The maximum Lyapunov exponent A is
negative for stable systems with fixed points, zero for periodic or quasiperiodic mo-
tion, and positive for chaos. The largest Lyapunov exponent plays an important role
in characterizing deterministic dynamics in theoretical studies. It has rather limited
use in empirical tests, since random noise may also generate a positive exponent
numerically. However, the maximum Lyapunov exponent may reveal some clue of
chaos, if the order of A — 1 is about T; the decorrelation time (Nicolis and Nicolis,
1986). If one has any doubt about the possibility of random noise, we recommended
to check the phase portrait and compare the reverse of Lyapunov exponent with the
decorrelation time. These technigues can tell whether business cycles are likely gen-
erated by unit-root random process or chaos (Nelson and Plosser, 1982: Frank and
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Stengos, 1988; Sayers, 1989).

The Correlation and Fractal Dimensions

The most useful characteristic of chaos is its fractal dimension (Grassberger and
Procaccia, 1984), which provides a lower bound to the degrees of freedom for the
dynamic system. The popular Grassberger—Procaccia (GP hereafter) algorithm esti-
mates the fractul dimension by means of the correlation dimension D (Grassberger
and Procaccia, 1983). The correlation integral C,,,(R) is the number of pairs of points
in m-dimensional phase space, whose distance between each other is less than K. For

random or chaotic motion, the correlation integral C,,(R) may distribute uniformly
in some region of the phase space, and it has a scaling relation of R”. Therefore, we

have

Iny Cpf Ry =D Iny R+ constant

(13.3)

For white noise, [ is an integer equal to the embedding dimension m. For determin-

istic chaos, D is less than or equal to the fractal dimension.

Pitfalls in Statistical Testing for Chaos

There are two major pitfalls in testing empirical data for chaos that need to be rec-
ognized. These involve (1) the common problems caused by insufficient information
in empirical tests; and (2) the specific limitations of statistical inference for distin-
guishing chaotic from stochastic processes,

»
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The Discrepancy between Mathematical Theory and Numerical Experime

In any scientific discipline, mathematical theory approximates only some asp
of empirical phenomena. Certainly, more difficulties attend empirical work
theoretical study, since the real world is much more complex than simplified mot
This is especially true for studies of nonlinear dynamics. I now want to outline s
of these difficulties in detecting chaos from empirical data.

Sparse Dala

Typical experiments in physics, chemistry, and biology often collect tens of tf
sands to almost a million data points and sampling time usually cover more th
hundred cycles. However, most economic indicators have only several hundred
points covering only a few cycles. This deficiency prevents many of the pow
tools in nonlinear dynamics, such as the Poincare return map, spectral analysis,
tual information, saddle-orbit analysis, and others based on statistical theory, |
detecting intrinsic irregularity even when it is there.

Some algorithms give useful hints even for a small data set, but their pow
much reduced. Worse, they may generate numerical artifacts. For example, the ¢
correlations of continuous-time chaos models in numerical models show expone
decay when the time span is very large (Grossmann and Sonnebom-5Schmick, 1€
However, the autocorrelations of continuous-time chaos look like those of peri
movements when only a few cycles of data are available (Figure 15.3¢). Small
sets will introduce spurious low frequency in the power spectrum when ther:
only about hundreds of data points available (Nelson and Kang, 1981).

The problem of sparse data is especially acute in dimension calculation:
cause their data requirements are severe. The minimum number of data point
required in dimension estimation has an exponential relation with the underl
dimension D, i.e., Np= h”. where i varies with different attractors (Mayer-K
1986). For example, in the case of the Mackey-Glass model (Mackey and G
1977), the required data for 2 =2 is Np = 500 points; and that for D = Jis A
10,000 points (Kostelich and Swinney, 1989). We also investigate the effect o
sample rate in dimension calculation, Generally speaking, 10-100 points per |
are needed for the Mackey—Glass model. The relative error of the numerical cos
tion dimension is about 1% for 100 cyeles, 3% for 30 cycles, 8% for 10 cycles
18% for only 5 cycles.

It is also found thar a discrete map needs even more data points than a
tinuous flow. For instance, the reasonable number of data points is 5000 for H
attractor (Henon, 1976) with O = 1.26 (Ramsey and Yuan, 1989). Asarule of th
the ohserved dimensionality in empirical data cannot be higher than 5 and enr
ding dimension in calculation should not be larger than 10, when data size is
than 10,000,
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Moise

The second major problem is that the subtle information of deterministic chaos
can be contaminated by numerical or measurement noise. The question is: To what
degree can noise be tolerated in empirical tests? There are several numerical tests in
terms of uniform noise. For example, it is found that the phase portrait of the noisy
Henon map can be recognized and the correlation dimension can be estimated when
random jitter is chosen from [—0.05, 0.05], the up-bond of noise/signal ratio is 0, 1%
for the correlation dimension of Mackey—Glass model (Ben-Mizrachi, Procaccia,
and Grassberger, 1983). In estimating the largest Lyapunov exponent, the allowance
is 5% (Wolf et al., 1985).

Continuous and Discrete Time and the Time Unit

For qualitative models in economic theory, the choice between difference and differ-
ential equations is a matter of a mathematical convenience or aesthetic taste. For em-
pirical models, however, the choice of time scale can crucially affect estimation and
verification. Preferably, it should be determined by the dynamic nature of the process
under investigation, For example, in population dynamics, the period of reproduc-
tion of nonoverlapping generation insects can be used as the natural unit to construct
a difference equation. More general systems that exhibit continuous motion with a
natural or intrinsic period should be sampled at intervals that correspond with the
intrinsic frequency. The resulting discrete time series can then be described by a
difference equation. However, when the natural period of a process is not known,
the choice of time unit is an open question. We cannot arbitrarily choose the time
unit without theoretical analysis and empirical evidence, This would appear to be
the viewpoint we should take in economics as noted by Koopmans, He suggested re-
placing the discrete-time stochastic model with a continuous-time stochastic model
when the serial correlation is much longer than the time unit (Koopmans, 19507.

Figure 13.5 shows that the pattern of the phase portrait is sensitive to the time
lag T for discrete mapping, but not sensitive for continuous-time ones. The latter
changes its shape only with varying T (Figure 15.4). In either case, the time unit
plays a critical role in data analysis.

To illustrate the problem, consider a discrete-time Henon model economy and
assume the intrinsic unit is a month, Now look at the phase portrait for *quarterly”
or “annual™ samples. The phase porraits in Figure 15.5 show that the pattern of
quarterly data i1s more complex than that of monthly data. It also illustrates that
the image of the annual data appears like random noise except its square boundary.
Fitting the Henon model to quarterly and annual data leads to complete failure. This
example illustrates why, i’ the underlying economic dynamics are truly discrete and
its intrinsic time unit is the order of day, or week, or month, the quarterly or monthly
economic indicators are not capable of revealing the discrete nature of dynamic
process.

MNumerical experiments show that the autoregressive and moving average model
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Figure 15.4 The two-dimensional phase portrait X(f) vs X(/ + T) of deterministic chaos
with varying time lag T, (a) Logistic model with T =1, time interval At =1, data size
i =300, (b) Logistic model with T=2, Ar=1, N = 300. (c) Rossler model with T = 0.5,
time interval Ar=0.05, and N =1000, (d) Rossler model with T=1, Af=005 N =
1000,

(ARMA) can well represent data generated by discrete time chaos, such as the
Henon and logistic models when the time intervals are the intrinsic ones but no
when they are based on a sample at time intervals different than this. For continuous
time models, like those of Lorenz (1963) or Mackey—Glass (Mackey and Glass
1977), the ARMA model can fit the generated data only when the sampling time
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Figure 15.5 The phase portrait of the Henon economy observed from varying time

interval Af, T =1, N=300. (a) Original monthly data with Ar=

with At= 4. (c) Annual data with Ar =12,

1. (b) Quarterly data
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interval is roughly of the same order as the average orbital time. In eithe
success or failure in fitting ARMA models cannot indicate whether the d
generated by noise or chaos,

Spectral analysis and autocovariance function cannot distinguish betwe
crete-time chaos and random noise (Dale. 1984; Brock, 1986). However, thes
ods can identify continuous-time chaos (Crutchfield et al,, 1980; Grossm
Sonnehorn-Schmick, 1982; Nicolis and Micolis, 1986). Few economic rese
are aware of these differences,

Limitations of Statistical Inference

Statistical inference has been developed to test stochastic process with i
independent distribution (i.i.d.). To what degree statistical inference is cap
dealing with chaotic process is still an open question. Stochastic and chaotic
are polar models based on conflicting assumptions. Most empirical cases li
gray zone between chaos and noise. Econometricians will soon be aware
gap between the static nature of statistical inference and the dynamic con
of chaotic behavior.

Inseparability of Nonlinear Systems

Currently, econometric reasoning is based on linear stochastic models. Ints
components can be separated and analytical solutions can be obtained in lin
tems, because the superposition principle of linear systems mathematically
the theoretical framework of homogeneous and additive economies. Howe
superposition principle is not valid for nonlinear systems, since the whole
than the sum of the parts for nonlinear dynamics. Nonlinear dynamic e
rarely have closed forms of analytical solution. This situation casts serious i
regression exercises for nonlinear dynamic problems. Nonlinearity imposes
challenge to time-series analysis in economic studies. The inseparability of
ear components may frustrate econometricians when they are developing sl
tools for testing economic chaos. For example, Brock argues that chaotic tin
can be detected by using a linear filter such as first differencing, or taking re:
a fitted ARMA model. He believes that the dimensionality of the original an
tered time series should be the same (Brock, 1986). However, it is difficult
the result of the differencing operation because it is sensitive to the time
of differencing. The concept of fractal dimensionality comes from self-simi
fractal structures (Hentschel and Procaccia, 1983). Brock did not discuss 1
of self-similarity when he tried to prove the residual test theorem.

The complexity of the problem can be seen from a special case of fir
encing. Assume {X(r)} denotes the continuous time series generated from ¢
altractor, say, the Rossler attractor. The fractal dimension of Rossler attra
larger than two but less than three. A one-dimensional chaotic discrete-tin
{uy} can be obtained from the Poincare section of {X(1)} in a two-dim
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Figure 15.6 The relationship between continuous and discrete chaos. The discrete-
time chaos {1} is obtained from the one-dimensional Poincare section of continuous-
time chaos {X(/)} in a two-dimensional phase space. Here, X(/} is generated from the
Rossler model with T=1, At =0.05, N =500, The time unit of one-dimensional dis-
crete Map U, = Flu,) is the average orbital time T, =1/{, around the unstable equilib-
rium point of continuous-time chaos {X(11}. The natural frequency 7, can be determined
from the highest peak in the power spectrum. .7

phase space. lis time interval is equal to the averaging orbital (natural) time Ty of
the attractor (see Figure 15.6). Therefore, the fractal dimension D' of {u, } must be
less than 1.

For the differenced time series { A, ]}, the outcome is uncertain if the time in-
terval for differencing is arbitrarily chosen. In practice, the differencing procedure in
ﬂ_&mnumelric modeling is a4 “whitening” process that cuts off the autocorrelation and
increases the variance in observed time series. So far as we know. there is no the-
oretical argument and numerical evidence to show the invariance of dimensionality
under a difference transformation.

Changing Strangeness under the Residual Test

It has been noted that correlation dimension is not invariant to a smooth coordinate
transformation (O, Withers, and Yorke, 1984). The residual of a moving average
process introduces random noise into the original data. This procedure may erase the
fr:y:tsrtl structure (Gurcia-Pelayo and Schieye, 1991). For the autoregressive process,
the situation becomes more subtle. The metric fractal dimension under a smooth
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linear deterministic transformation is invariant, but most probability dimensions ar
not,

To check the validity of the residual test, we tested the Henon attractor wil
3000 data points, which is good enough to uncover its dimensionality (Ramse
and Yuan, 1989). We fit the ARMA(6,3) model and AR{6) model, respectivel:
to the Henon time series. The correlation dimension of ARMA(6,3) residuals i
equal to the embedding dimension, which is the characteristic of random noise. Th
correlation dimension of AR(6) residuals cannot be determined because no parall
line can be identified from the GP plot. Probably, the AR(#n) transformation change
the probability density in phase space, and the definition of correlation dimensio
is related to the sguare of probability density (Hentschel and Procaccia, 1983).
residual test of the logistic time series has 4 similar result. For a continuous Lin
model. such as the Lorenz attractor, fitting it to the low-order ARMA model
increasingly difficult, when autocorrelation is long and the time interval is sho
compared with its natural orbital time. No clear-cut conclusion can be reached fro
the residual tests in our numerical experiment.

A technical remark should be made here. It is known that only idealized mo
els of pure random noise and well-behaved attractors have well-defined correlatic
dimension. This means that a time series may not have a well-defined correlation ¢
mension. When no plateau region or no saturated dimension can be identified fro
the Grassberger—Procaccia plots, the correlation dimension is not tractable, The fa
value of the numerical mean in dimension calculations should not be readily
cepted until its Grassberger—Procaccia plot has been carefully examined.

The Pitfall of Linear Stochastic Filter in Detecting Deterministic Chaos

It is well known that any Gaussian or i.i.d. time series can be represented by
infinite autoregressive process or moving average process (Granger and MNewbo
1986), Some features observed in empirical tests, such as the long autocorrelatic
in a deterministic time series, can be simulated by a finite-order stochastic proce
either in linear or nonlinear form. But a stochastic model cannot simulate a se
similar structure such as that of the Cantor set. Characterizing a strange atirac
requires a spectrum with infinite dimensionality (Farmer, Ott, and Yorke, 1983}
The above discussion may help to solve the dispute raised by Ramsey. Saye
and Rothman (1990). Conflicting results from nonlinear diagnostics and the resids
test are reported in testing the monetary indexes (Chen, 1987h, 10988b: Barm
and Chen 1988; Ramsey, Sayers, and Rothman, 1990). Ramsey and co-work
duplicated our results from log-linear detrended data. However, there is no sign
nonlinear structure in the residuals resulted from a double-sided moving aver:
filier. The reason for the absence of such a sign is that the symmetric, low-rej
filter used by Ramsey and his colleagues did not wipe out high-frequency noise.
improperly removed the low-frequency deterministic components. Az we indica
before, a continuous-time chaos can be considered as an imperfect periodic mot
with low frequency and irregular amplitude (Chen, 1988b). In Ramsey’s test,




230 PROBLEMS OF ESTIMATION AND INFERENCE

filtered time series did not even become stationary, which was required by attractor
modeling. The low-reject filter made the variance of the filtered monetary index
increase over lime. The seemingly contradictory reports resulting from the residual
tests are actually an aid in understanding the essential difference between linear
stochastic deduction and nonlinear deterministic logic.

The Roots of Nonstationality and Nonnormality

Nonstationality and nonnormality are widely observed in economic time series be-
cause economies are open systems. It is a formidable task for econometricians to
deal with these problems within the conventional framework of i.i.d. process. De-
terministic approach and stochastic approach in theoretical economics Tepresent
conflicting ideas of endogenous and exogenous mechanisms of business fluctua-
tions. However, the deterministic description and probabilistic description of dy-
namic process in theoretical physics are simply complementary tools in the unified
dynamical framework. For example, chemical reactions can be described by (de-
terministic) differential equations or a master equation. The probability distribution
function in master equation can be obtained by solving a (deterministic) partial dif-
ferential equation. In the case of the Fokker—Planck equation, the peak of the dis-
tribution function or the mean value evolves along the path that can be represented
by the trajectory of the corresponding deterministic equation. Therefore, these two
approaches are equivalent when the distribution function is unimodal (Nicolis and
Prigogine, 1977, 1989; Reichl, 1980). However, during bifurcation at the critical
point of some control parameter, fluctuations will be so large that the mean value
no longer represents the most-likely situation because the distribution function may
become multihumped (Baras et al., 1983; Chen, 1987a). Actually, many statistical
practitioners have already observed nonnormal, long-tail, and multimodal distribu-
tion in empirical studies.

The relationship between deterministic approach and probabilistic approach in
nonhnear dynamic systems is illustrated in Figure 15,7,

Roughly speaking, between two bifurcation points, the dynamic process follows
a deterministic path, which can be described by averaging when the process has a
unimodal distribution. Statistic inference or i.i.d. process can be approximately ap-
plied only in this situation. The bifurcation model is quite useful in understanding
noncontinuity, nonstationality, and nonnormality in real economies when econome-
tricians are confounded by the multiple phase character of economic evolution (Day
and Walter 1989). Changing economies can be one of the major obstacles in detect-
ing economic chaos.

Some Conclusion about Numerical Algorithms

Practically, we have only some clue of low-dimensional attractors with finite data
sets. There is no way to identify deterministic chaos with certainty. At present,
with data only in the hundreds, the discovery of economic strange attractors whose
dimensionality is higher than 3 is unlikely,

Al
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stochastic equation and the corresponding solution of the deterministic equation.

We can only speculate why we were unable to identify correlation ﬂill’]:il:lﬁll:
for other types of economic time series, such as (GNP, [PF, and the I_)uw—l.lnnaa ind
in our numerical tests. Either their dimensions are too high, or their noise levels |
too large, or they do not in fact reflect intrinsic characteristics of cnmpie:x ba:taw
or changing economies caused by series of bifurcations. Current observational sci
and analytical technigue are not capable of solving these problems.

Testing Economic Chaos in Monetary Aggregates

With the pitfalls well in mind, I shall briefly reconsider my work on monl:‘ﬂ!m'}f g
gates to illustrate techniques for detecting chaos. The Federal Resm::_s mone
indexes include M1, M2, M3, and L. These are simple-sum ag:gmgslntc mdexcg t
noted by SS hereafter), There are also parallel Divisia theoretical indexes sucl
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Divisia demand indexes (denoted by DD hereafter) and Divisia supply indexes (de-
noted by DS hereafier).

We tested 12 types of monetary index time series covering the period from
1969 1o 1984. Five of them suggested strangeness: Federal Reserve’s simple-sum
S5M2, Divisia demand DDM2, DDM3, DDL and Divisia supply DSM?2 monetary
aggregates (Chen, 1987b, 1988a.b). The behaviors of Divisia aggregates are very
similar. We discuss only SSM2 and DDM2 here for brevity. Previously, the weekly
data were used in our test. Now, the tests of the original monthly data are added here.
Our data source is Fayyard. Monthly and weekly indexes are distinguished by the
letter m and w, respectively. All the data are log-linear detrended, since no strange
attractors have been identified from the first differencing data.

Data Processing and Path Smoothing

Ramsey and co-authors noted that the weekly monetary data used in our previous
test were largely generated from monthly raw data by spline interpolation and model
reconstruction (Ramsey, Sayers, and Rothman, 1990). The question is whether the
interpolation procedure may introduce additional correlation or alter the original
dimensionality. For this reason, we reexamined the original monthly monetary data.
The numerical results of correlation dimension n, decorrelation time T, and the
largest Lyapunov exponent A of the monthly data are essentially in the same order
as weekly data. It is not surprising that interpolation does not change the primary
characteristics of deterministic movements in our case. The interpolation procedure
1s equivalent to a smoothing technique for noise reduction.

In fact, interpolation is widely used in the scientific community when raw data
are incomplete (Charney, Halem, and Jastrow, 1969; Tribbia and Anthes, 1987).
Interpolation and smoothing were also used in testing chaos from climate, ecalog-
ical, and epidemic time series (Grassberger, 1986; Schaffer, 1984; Schaffer and Kot,
1985).

Detrending Methods and Attractor Models

Testing economic aggregate time series for chaos or randomness is a formidable
task. The intrusion of growth trends raises a eritical problem of how to character-
ize a growing economy by means of mathematical attractors. Various methods of
detrending have been used in econometrics. We are interested in their theoretical
implication: the choice of reference sysiem in observing economic behavior. We at-
tempted to explore this problem through numerical experiments on empirical data.

For example, the percentage rate of change and its equivalent form, the log-
arithmic first differences, are widely used in fitting stochastic econometric models
{Osbome, 1959; Friedman, 1969). It can be defined as follows:

Zit)=1In 8(t+ 1) —In S(r) =In {5(z + 13/5(c)}

i(15.4)

SEARCHING FOR ECONOMIC CHAOS

where 5(r) is the original time series, and Z(r) is the logarithmatic first differer
An alternative method called log-linear detrending has been used in chaos
els (Dana and Malgrange, 1984; Brock, 1986; Bamnett and Chen, 19858). We h:

Xiny=In §(1) = Chkp + k1) |

ar

Sy =58y explin) exp[Xir)

where Sir) is the original time series, and X (7} is the resulting log-linear detr
time series, kp is the intersection, & the constant growth rate, and 5y = expiip)

Our numerical experiments indicate that the percentage rates of chang
whitening processes based on short time scaling. Log-linear detrending, on the
hand, retains the long-term correlations in economic fluctuations, since its time
represents the whole period of the available time series. Findings of evider
deterministic chaos mainly from log-linear detrended economic aggregates |
this conclusion,

Figure 15.8a shows the time sequences of the log-linear detrended (ds
by LD) monetary aggregates S5M2. Its almost symmetric pattern of nearly
length of expansion and contraction is a typical feature of growth cycles in eco
systems. The usual business cycles are not symmetrical. Their longer expa
and shorter contractions can be obtained in such a way, when a trend with co
growth rate is adding to symmetric growth cycles. The logarithmic first-diff
time series (denoted by FD) S5M2 is given in Figure 15.58b as a comparisol
latter is asymmetric and more erratic,

Empirical Evidence of Deterministic and Stochastic Processes

Based on the phase portrait and autocorrelation analysis, we can qualitatively
guish a stochastic process from a deterministic one. Figure 15.9a presents the
portrait of detrended monetary aggregates LD SSM2. It rotates clockwise i
spiral chaos in Figure 15.2¢. The complex pattern is a potential indication of 1
ear deterministic movements and eliminates the possibilities of white noise or
periodic motions. To compare with a series that appears like white noise, the
portrait of TBM daily stock returns is shown in Figure 15.9b. The autocorre
of the detrended time series are shown in Figure 15,10, Readers may compart
with the autocorrelations in Figure 15.3c,

If we approximate the fundamental period Ty by four times the decorm
time Ty, as in the case of periodic motion, then, Ty is about 4.7 years for LD
This result is very close to the commeon experience of business cycles. We will
to this point later.

The Numerical Maximum Lvapunov Exponent and Autocorrelations

Let us now consider the tests using the Lyapunoy experiments and autocorrel
In theory, the choice of evolution time EVOLY, embedding dimension i an
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Figure 15.8 Comparizon of the detrended weekly time series S5M2w. (a) Symmetric
LD 55M2w: the log-linear detrended S5M2w with a natural growth rate of 4% per year.
(b} Asymmetric FD S5M2w: the logarithmic first differences of SSM2.

delay T', has no relevance to the maximum Lyapunov exponent, In practice, the valug
of the Lyapunov exponent does relate to the numerical parameters, The range of evo-
lution time EVOLY must be chosen by numerical experiments. The positive maxi-
mum Lyapunov exponents of the investigated monetary aggregates are stable over
some region in evolution time. The numerical Lyapunoy exponent is less sensitive 10
the choice of embedding dimension m. In our tests, we fixed m at 5 and time delay
T at 5 weeks based on the numerical experiments. For example, the stable region
of EVOLV is 45-105 weeks for SSM2 and 45-150 weeks for DDM2, Their aver-

age maximum Lyapunoy exponents over this region are 0.0135 and 0.0184 (bit per
week), respectively.
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The characteristic decorrelation time T of the LD §5M2 is 61 weeks, The
reciprocal of the maximum Lyapunov exponent A~ '(= 74.1) for LD SSM2 is roughly
of the same order of magnitude as the decorrelation time T4. This relation does not
hold for pure white noise,

The Correlation Dimension

The correlation dimension v can be estimated by the Grassberger-Procaccia algo-
rithm, Plots of In C,,(#) versus In # and slope versus log R for LD SSM2 and LD
DDM2 are shown in Figure 15.11 and Figure 15.12. The existence of linear regions
of intermediate R. which reflect the fractal structure of the attractors, is shown in
Figures 15.11a and 15.12a. The correlation dimension can be determined from the
up-bond slope of the plateau region in Figures 15.11b and 15.12b. The level of uni-
form noise in the data can be estimated from the left end of the plateau when & is
small.

We calculated the correlation dimension with the time lag T varying from 4 to
38 (the decorrelation time of DDM2m). The pattern is not sensitive to changing T
The first zero-autocorrelation time is not the best choice for T in our cases, because
a large T may cause folding in the phase space.

We found that the correlation dimensions of the investigated five monetary ag-
gregates were between 1.3 and 1.5, They include four Divisia monetary indexes and
one official simple-sum monetary index. For other monetary aggregates, no correla-
tion dimension could be determined,

A Continuous Time Model of Growth Cycles
with Delayed Feedback and Bounded Expectations

Given the evidence just presented, and given our comments on the desirability of
4 continuous-time model, let us consider a continuous-time representation of eco-
nomic data with low-dimensional chaos.

The observed low correlation dimension and long decorrelation~time set con-
straint on the modeling of growth cycles. For a typical discrete model, T, is ap-
proximately the same order of the time unit. The decorrelation time Ty for monetary
attractors is more than 60 weeks. A continuous time model would seem to be ap-
propriate to describe monetary growth cycles. The minimum number of degrees of
freedom required for chaotic behavior in autonomous differential equations is 3. The
low dimensionality of monetary attractors leads to the assumption that the monetary
deviations are separable from other macroeconomic movements. The background of
growth cycles can be approximately represented by a constant exponential growth
trend, or the so-called natural growth rate.

After comparing the correlation dimension and the phase portraits of the data
and alternative models, a differential-delay equation suggests itself as a good candi-

date. For simplicity, we consider only one variable here, ,[

SEARCHING FOR ECONOMIC CHAOS 2

Deviations from Trend and Time Delay in Feedback

The apparent monetary strange attractors are mainly found in log-linear detrenc
data. This is an important finding to study control behavior in monetary policy
assume that the general trends of economic development are perceived by peo
in cconomic activities as a common psychological reference or as the anchor in
serving and reacting (Tversky and Kahneman, 1974). Administrative activities
basically reactions to deviations from the trend. Accordingly 1 choose the deviat
from the “natural growth rate” as the main variable in the dynamic model of mol
tary growth in the following equation:

dX(1)/dr = aX(t)+ F1X(t — 7] (12
F(X)=XG(X) (13

where X is the deviation from the trend, 7 is the time delay, a is the expansion spe
F is the feedback function, and ( is the control function. There are two compet
mechanisms in the growth system. The first is the immediate response to mar
demand. Tt is described by the first term on the right of eguation (15.1). The sect
term represents the endogenous system control described by the feedback funct
F. This consists of feedback signal X(r — 7) and control function G. The time de
+ exists in the feedback loop because of information and regulation lags.

There are several considerations in specifying F and G. We argue that the m
etary policy follows a simple rule based on the bounded expectations of mone
movements. We assume the feedback function F(X) has two extrema at :l:j‘lfm
the control-target floor and ceiling as argued by Solomon (1981). To describe
overshooting in economic management and the symmetry in growth cycles, G
should be nonlinear and symmetric, G(—X) = G(X). A simple exponential funcf
describes the assumed nonlinear control function with flexible floor and ceiling
control behavior is similar to that driving in a freeway with lower and upper sp

limits.
G(X)=—b exp(—X2/a?) (1

where b is the control parameter, the minus sign of b is associated with T
tive feedback, o is the scaling parameter, and the extremas of F(X) are locate
X, =+ /+/2. Substituting equation (15.9) into equations (15.7) and (15.8) gives
following differential-delay equation:

dX (r)/di = aX(t) — bX(t — ) exp[—X(t — 7)* /2] (15

We may change the scale by X =X'c and r =t'r, then drop the prime for co
nience:

dX(0)/dt = aTX (6) — brX (¢ — D expl—X(r — 1)*] (15
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What Can We Learn from the Model
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Phase Transition and Pattern Stability

Figures 15.13a-b displays qualitatively the phase diagram of
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Long Wave and Short Cycles

In addition to seasonal changes, several types of business cycles have been identifie
by economists: the Kitchin cycles (3-5 years), the Juglar cycles (7-11 years), il
Kuznets cycles (15-25 years), and Kondratieff cycles (45-60 years) (Van Duij
1983). Schumpeter suggested that these cycles were linked. Each longer wave m:
consist of two or three shorter cycles. This picture can be described by the period
phase C2 or C3 in the CP regime of our model. The irregularity in long wav
can also be explained by the chaotic regime CH. Our model gives a variety
possibilities of periodicity. multiperiodicity and irregularity in economic histor
although our data show the chaotic pattern only in monetary movements. It is wide
assumed that the long waves are caused by long lags, a belief coming from the line
paradigm (Rostow, 19800, This condition is not necessary in our model, becau
the dynamic behavior of equation {15.13) depends both on a7 and b7. A siro
overshooting plus a short time delay has the same effect as a weak control pl
a long time delay, a point also made by Sterman {1985). This model is so simj
and general, it could have applications beyond the monetary system in the marl
economy we discussed here, For example, the growth cycles and long waves caus
by overshooting and time delay may also happen in centrally planned econoimies.

Simulating Empirical Cycles and Forecasting Basic Trends

In comparing model-generated patterns with empirical data, we may confine
experiments 1o certain regions of the parameter space. For example, we can estim
the average period T from 4 times the decorrelation time Ty. The time delay 7
monetary control due to regulation lag and information lag is between 20 and
weeks (Gordon, 1978). If we estimate the time delay T to be 39 weeks, we
simulate LD SSM2 time series by the solution by setting 7=39,a= 0.00256.
0,154, and o = 0.0125. The model results match well the average amplitude .
decorrelation time T, positive maximum Lyapunov exponent A, and correlal
dimension D of the empirical time series.

We tested the theoretical models with power spectra and autocorrelation
ysis, The approximated period T of the chaotic solution can be estimated from
measured by 3-5 cycles. It is close to the fundamental period Th(=f; 1). The i
damental frequency can be determined by power spectra. The error can be less t
3% when observation period covers 100 cycles. For LD SSM2 time series, the
ference of T; measured between 10 and 15 years is less than 5%. We can ob
valuahle information about the fundamental period Ty without knowing the &
parameters of the deterministic model.

The small data sets cause the estimation of the correlation dimension to b
ased downward (Ramsey and Yuan, 1989). In our theoretical sirnulation of mone
cycles, the numerical result of the correlation dimension is 1.7 calculated with |
data points and 2.08 with 16,384 points for the same model. The error is 18
dimension estimation of the growth-cycle model. The results of monthly mon
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Figure 15.14 The two-dimensional phase portrait and the maximum map of theo-
retical monetary strange attractor (Chen, 1987b). The scale is arbitrary. (a) The two-
dimensional phase portrait of theoretical monetary strange attractor, which rotates
clockwise, N =25000,T=1,At=0.01. (b) The maximum map obtained from the
one-dimensional Poincare section in two-dimensional phase space. The time unit is the
averaging orbital time T,.

data are still within the margin of numerical reliability because of their low dimen-
sionality (Chen, 1988b). Certainly, the numerical estimation of the correlation di-
mension for monetary indexes is only suggestive since the amount of data is small.
Further empirical observations are needed to provide better evidence of monetary
chaos.

The phase porirait and maximum map of a theoretical model of monetary chaos
are demonstrated in Figure 15.14. The theoretical monetary strange attractor rotates
clockwise (Figure 15.14a), which mimics the movement of the monetary growth cy-
cle in Figure 15.9a. The maximum map shows the qualitative picture of discrete-time
chaos typically created by the Poincare section (Figure 15.14b). A brief summery of
hoth empirical and simulating results is given in Table 15.1. The time unit of weekly
data is converted to monthly for comparison. Here, the time scales are 1 year = 12
months = 52 weeks, and 1 month = 4.3 weeks, 55M2t is the simulating time series
generated by the theoretical monetary growth model and its correlation dimension n
is calculated with 1000 and 16,384 data poinis, respectively (Chen, 1988b).

Implications for Forecasting and Control Policy
The predictive power of a chaotic economic time path is limited by the magnitude of
the maximum Lyapunov exponent. Nevertheless, we may potentially recover more
information from chaotic motion than from randomly generated movements. We
Jknow that a lone-term orediction of the chaotic orbit is impossible from the view

SEARCHING FOR ECONOMIC CHAOS

Table 15.1 Empirical and Theoretical Evidence of Monetary Chaos

Mume N {obs) M/ nt) A Tyim) o
S5M2m 185 0.0242/m 41.3m 14m 1.3
DDM2m 195 0.0489/m Hi4m 38m 1.3
DDM3m 195 (LOZ18/m 45.9m iTm 1.3
DOLm 192 (L0397 m 252m 35m 1.3
S5M2w BO7 0.0581/m 17.2m 14.2m 1.5
DDM2w BO7 .0791/m 12.6m 34.9m 1.4
DDM3w "7 0.0774/m 12.9m H.2m 1.5
DDLw 708 0.0525/m 19.1m 32.3m 1.5
DSM2w 798 0.0585/m 17.1m 32.6m 1.3
S5M21 10w (L0688 m 14.5m 14.2m 1.7

(16384 (2.08)

of nonlinear dynamics. A medium-term prediction of approximate period T c:
be made, if we identify strange attractors from the time series.

Let us discuss the meaning of the control parameters in equation (15.13).
h =1, the monetary deviation from the natural rate will grow at a speed ¢
define a characteristic doubling time ¢, which measures the time needed 1o c
the autonomous monetary expansion X(¢) without control. Similarly, we ci
fine a characteristic half time 15, which measures the time needed to redu
money supply to half its level, when a =0 and X(r — 7) reaches the control
Xm=0/+/2=14% per year. The same is true for the contraction movements
the feedback function G(X) is symmetric. Here 1, is 5.2 year and t; is 7.4 we
55M2 in our simulation. We see that even modest time delay and overshootin
generate cycles and chaos.

For policy considerations, the phase diagram of the model suggests tf
steady state in money supply can be achieved by carefully adjusting the
parameter b or the time delay 7 (see Figure 15.13). For example, we car
{=0.1) and 7(= 39 weeks) and set b in stable regime (0.41 < b < 1.5] or 29.5
<ty = 108.7 weeks); we may also fix a(=10.1) and hi=6.0) but choose T
regime (14.4 minutes < 7 < 1.3 day). Obviously, reducing overshooting is
easier than cutting time delay in monetary control. These figures give a qual
picture of monetary target policy (Chen, 1988h).

Linear Approximations of a Nonlinear Model

Let us study the relationship between the nonlinear dynamic model (15.10) .
linear approximation under some simplifying conditions.

A different equation can be obtained as an approximation of a nol
difference-differential equation (15.10) when the time unit is chosen to be th
delay 7(r = 1) and X(r) is much less than the control target o, and b is less th

e have
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dX(n)/dr=X(n+1) — X(n)=aX(n) — bX(n — 1) exp(—X(n - 1¥/e”) (15.12)
=aX(ny— bXin—1)— bX(n - 1}%;’4;'3 (15.13)

ar
X(n+ D= X(n) + X (n— D+ wXn—1)° (15.14)

where oy = (1 +a),cy=—h,w =bl.r'4.'r2, Equation (15.14) looks like an AR(2) process
when the nonlinear term wX(n — 1)? is ignored and replaced by some noisy residual
term. Although AR(2) approximation may be very useful and convenient in econo-
metric analysis, its drawbacks and limitations are also significant, First, the sampling
time unit should be the time delay that is between 20 and 56 weeks, equivalent to
quarterly or annual data (Gordon, 1978). Second, the AR(2) model is misleading in
its stochastic nature, because the residual is generated by the nonlinear term with
long-term correlations, not random noise without correlations.

We may also have a differential version of equation (15.13) when the time delay
is ignored,

dX (t)/dt = —aX(t)g{exp[-X (1)} /o] — 1} (15.15)

where g = b/a == |, s0 the equation has a fixed point solution. Friedman believes
that the natural rate in economies can be achieved in so-called long-run equilibrium
{Friedman, 196%). In our case, constant growth rate can be realized when the time
delay in control process is zero. Obviously, this is an idealistic case but unrealistic
situation. The concept of leng-run equilibrium in static analysis can be considered
as the fixed point solution in nonlinear dynamic systems. Although steady state is
hard to achieve due to time delay and overreaction in human behavior, eguilibrium
or steady state can still serve a reference regime for control target.

This example demonstrates the close connection between nonlinear economic
dynamics and linear dynamics. Static equilibrium analysis could be integrated in the
generalized framework of diseguilibrium dynamics.

Brief Summary and Future Directions

So far we have little evidence of economic chaos from empirical data. However,
theoretical powers of modeling complex behavior and mathematical generality of
nonlinearity strongly support the development of chaotic economic dynamics. The
prerequisite for this advancement is its tremendous demand of empirical information
and computational power to handle nonlinear problems,

The question is how to extend our scope of economic analysis and advance our
study of economic chaos. Four directions should be explored in the near future.

e Rethinkine the operational framework of chaos theory for empirical studies.

SEARCHING FOR ECONOMIC CHAOS

The standard definition of deterministic chaos is based on the positive Lya
exponent. Fractal dimension is also important in characterizing the strange an
(Hao, 1990)), These criteria are useful in stodies of theoretical models and cor
experiments, but very restricted in empirical analysis. We should develop oper:
guidelines for choosing chaotic or stochastic approaches in empirical analysis

Prigogine pointed out that deterministic chaos is only a partial feature of
plex systems. Long-range correlation is the fundamental character of compl
namics (Nicolis and Prigogine, 1989). This definition of chaotic process ma
econometricians in understanding chaos and noise, since econometric anal!
based on stochastic process with short correlations.

In my experience in analyzing large numbers of economic time series, ta
cases of economic chaos are rare, but long-term correlations appearing in em
data are abundant. The real problem is always more complicated than theo
models. It is true both for natural sciences as well as social sciences. For
ple, discovering the beautiful structure of hydrogen spectra is a rare case e
physics. However, the discontinuity of frequency distribution widely observed
tical spectra strongly support the quantum theory.

Mo empirical observation can be done without theoretical reasoning, whe
waorks in an explicit or implicit way. The difference lies deeply in theoretic fi
tion. Some econometricians use a whitening technique such as multiple differ
to eliminate correlations and justify stochastic models. We try long-term detr
methods to extract correlation signals and recover deterministic mechanisms.

» Reexamining the theoretical foundation of econometrics.

Economists ofien compare economy with weather (Goodwin, 1990). Al
the irregularities of their behavior are very similar, their theoretical persps
are just the opposite. The failure of econometric forecasting based on a sto
approach (Dominguez, Fair, and Shapiro, 1988; Wallis, 1989) and the suct
weather forecasting based on a deterministic approach (Tribbia and Anthes,
dramatize the difference in their methodological foundation.

» Expanding the empirical base of economic studies.

Genuine economic dynamics cannot be discovered by curve fitting in
of statistical techniques. The current controversy of chaos versus noise can
completely settled by numerical tests based on limited contaminated data.

Consider the oldest problem of planet motion in astronomy. The irregul:
paths of planet motion are easily seen in short-time observations. Linear sto
models may fit the data and give a good explanation of the short history. He
cumulative observations reveal regularity in recurrent patterns. Although arit
rules in calendar calculation can be established from empirical data, theoreti
derstanding went a long way from Copernicus™s idea of heliocentric referen
tem, to Kepler's law of planet motion, and Newton's law of classical mechani
The improvement in weather forecasting has been achieved by expandi
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nigues. Increasing computer power also facilitates increasing precision of nonlinear
models and weather forecasting. However, current resource constraints in empirical
economic research result in an economic profession basically confined in thought
experiments and linear models because of the lack of empirical data and computing
power in the information age, Long-term investment in “economic weather-station
network” and research efforts in complex economic dynamics is essential for ad-
vancing empirical economic science.

Exploring economic chaos opens new ways to understand human behavior and
social evolution. The interdisciplinary character in developing evolutionary dynam-
ics and nonlinear economics has not only changed the way we think, but also the
institution in which we organize economic research,

Appendix A. A Direct Test for Determinism in Monetary Time Series

A new algorithm of direct testing determinism has been developed by Daniel Kaplan
and Leon Glass (1992a.b) at McGill University. It turns out to be a useful tool 1o
distinguish between determinism and randomness, Their idea is simple.

At each state a deterministic dynamic flow has only one direction, while a
stochastic system has more than one possible value. By calculating local coarse-
grained flow averages and statistics A, one may have a better chance of dealing with
noisy and short time series than calculating Lyapunov exponents and correlation
dimensions,

We sent two time series of 807 points in length, DLSM2 and PCSM2, to Kaplan.
PCSM2 is a simulated time series generated by equation (15.11). DLSM2 is the
log-linear detrended SSM2 weekly time series in Figure 15.9a. Kaplan finds clear
conclusions for both time series. We now provide further evidence of deterministic
monetary chaos, courtesy of Kaplan (private communication, April 9, 1992),

PCSM2 easily passes the test of determinism as shown in Figure 15.15a: the
lambda-bar is close to 1 for the deterministic signal, and the contrasting Gaussian
random process with the same autocorrelation function W is much less and near zero,
as is expected from the theory.

DLSM2 in Figure 15.15b shows that the signal is more deterministic than a
Gaussian random noise. Its low resolution is due to short time series and high level
of noise. It would be helpful for economic studies to have a longer time series of
empirical data in the future,

Figure 15.15 Kaplan-Glass plots for testing determinism. A vs. 7 for tested time series
and a Gaussian random process (GRP) with identical autocorrelation (-} are marked
by open symbols and filled symbols, respectively. For a deterministic system, A is close
to 1. For a stochastic system, A is much less than 1 and near 0. (a) PCSM2, N =807,
Embedding dimension 71= 3, and resolution = 1/512. (b) DL5M2, N = 807. Embedding
dimension m = 3, and resolution = 1 /8. ' |
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Appendix B. Testing Correlation Resonances in Searching for Chaos

In Chapter 1, Professor Prigogine pointed out that complex spectral theory plays a
critical role in dealing with unstable dynamic systems. OFf special importance is the
concept of correlation resonances (Ruelle, 1986) which are the peaks of correlation
spectra of time series data. We call this approach “the complex spectral analysis of
correlations (CSAC)”

A complex Fourier spectrum is a natural generalization of conventional Fourier
spectrum when unstable states are present. The complex spectral representation in
physics originated from the problem of decaying states and resonances in quantum
mechanics (Gel'fand and Vilenkin, 1964). The CSAC shifts interest from the orig-
inal time series to the correlation functions, Resonances in Henon map were stud-
ied by Isola (1988). The complex spectral theory for nonintegrable large Poincare
system developed by Petrosky and Prigogine (1991) has been applied to studies of
highly chaotic maps by Hasegawa and Saphir (1992). These developments form the
foundation for empirical applications of CSAC approach.

Zhang, Wen, and Chen (1992) have improved the CSAC numerical technique
for empirical testing with limited data points. The procedure s to first calculate au-
tocorrelations of the time series data, then calculate the power spectra and locate
complex singularities of correlations by means of the Pade rational function approx-
imation, and, finally, estimate resonance frequencies and their exponential decay
rates.

We tested several log-linear detrended data, including S&P 500, Federal Re-
serve M2, crude oil prices, and real GNP data. Our initial results, which are reported
in Table B.1, provide strong evidence of economic chaos in monetary data, and weak
evidence in stock market and oil price data, Weaker evidence is provided in the case
of GNP,

The CSAC approach is just one possible test that should be added to the package
of numerical tests briefly outlined in this chapter. Each test may reveal one or two
aspects of nonlinearity and long-range correlation. The tests are complementary and
should all be used in a weighted judgment.

The empirical findings shed important light on endogenous economic dynamics.
First, the generalized concept of unstable periodic modes breaks the intellectual
barrier between chaos and noise— the two idealized models of complex reality. Now
we may define the peaks (resonances in correlation power spectra) with exponential
decays as one of many operational indicators of typical chaos.

Second, the existence of correlation resonances in economies builds a link be-
tween nonequilibrium evolutionary processes and static equilibrium representations.
The correlation resonances reveal the coexistence of various characteristic fluctua-
tions. The lifetime of metastable modes provides o quantitative measure of the fran-
sition from disequilibrium to equilibrium,
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Table 15.2  Testing Economic Chaos Based on Various Methods

Mame LFDS&P S&P M2 GNP Breng
MN-points (L 150K B07 164 S8R0
Period 1952-81 195281 196954 1946-RR 1983-85
Time unit {4 5 days Sduys week quarer day
TAA) 2 136 il 2 A
AAh 014 0.0145 0013 (.032 0.020
ANA) T4 i) T4.1 3l 50
D no 20 1.5 2570 1.5
P-Portrait rindom spiral spiral spiral spiral
K Test no no =1 7 no
T ni 43.8 v5[7] 4. 30ys 3dys 1409 ds
T 439 v3[7] 244 vs * 557 ds
T no 333 ys 1.98 vz 125 vs 242ds
e 13.0 ys 0.91 vs 7 477 ds
T, né 1,600 5 368 1E.5 ds
T * 2 206 ds
chaos evidence na wek strong weaker wieak

A Wleere A is Lyapunov exponent, Ty s decorrelation time measured from ihe first 2ero of auiocorrelations, 0 |
tien dimension, P-portrait represents phase portrait, and KG stands for Kaplan-Glass direct test, T (=27 /) is |
of correlation resonance, (= [ /o) i the lifetime of unstable mode g7t

Mote: The question mark (73 casts doubd on the numedcal reliability when data are shord, The asterisk (*) indi
thee extremely slow decay actually means persistent ascillation within the numesical precision.

The results of the observed resonance frequencies are consistent with th
mon experience of business cycles (Gordon, 1986). The different rates of ex
tial decay provide good indicators of adjustment speed for persistent mediur
ness cycles and faster dissipative innovation shocks.
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